Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 048902    DOI: 10.1088/1674-1056/21/4/048902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Competition between two kinds of information among random-walking individuals

Liu Zhen-Zhen(刘真真), Wang Xing-Yuan(王兴元), and Wang Mao-Ji(王茂基)
School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  A model is proposed to describe the competition between two kinds of information among N random-walking individuals in an L$\times$L square, starting from a half-and-half mixture of two kinds of information. Individuals remain or change their information according to their neighbors' information. When the moving speed of individuals v is zero, the two kinds of information typically coexist, and the ratio between them increases with L and decreases with N. In the dynamic case (v>0), only one information eventually remains, and the time required for one information being left scales as Tdv$\alpha$LβN$\gamma$.
Keywords:  information spread      random walk      complex networks      power law  
Received:  25 November 2011      Revised:  14 December 2011      Accepted manuscript online: 
PACS:  89.75.-k (Complex systems)  
  87.23.Ge (Dynamics of social systems)  
  64.60.aq (Networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172), the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014), and the Natural Science Foundation of Liaoning Province of China (Grant No. 20082165).
Corresponding Authors:  Liu Zhen-Zhen,zhzhenliu@gmail.com     E-mail:  zhzhenliu@gmail.com

Cite this article: 

Liu Zhen-Zhen(刘真真), Wang Xing-Yuan(王兴元), and Wang Mao-Ji(王茂基) Competition between two kinds of information among random-walking individuals 2012 Chin. Phys. B 21 048902

[1] Pethel S D, Corron N J, Underwood Q R and Myneni K 2003 Phys. Rev. Lett. 90 254101
[2] Wang M, Wang X, Liu Z and Zhang H 2011 Chaos 21 013107
[3] Zhang H, Ma T, Huang G and Wang Z 2010 IEEE Trans. Syst., Man Cybern. B 40 831
[4] Wei D, Luo X and Zhang B 2011 Acta Phys. Sin. 60 128903 (in Chinese)
[5] Zhang H, Gong D and Wang Z 2011 Chin. Phys. B 20 040512
[6] Si X and Liu Y 2011 Acta Phys. Sin. 60 078903 (in Chinese)
[7] Zhang H, Liu Z and Huang G 2010 IEEE Trans. Syst., Man Cybern. B 40 1480
[8] Moreno Y, Nekovee M and Pacheco A F 2004 Phys. Rev. E 69 066130
[9] Llas M, Gleiser P M, López J M and D'hiaz-Guilera A 2003 Phys. Rev. E 68 066101
[10] Wu F, Huberman B A, Adamic L A and Tyler J R 2004 Physica A 337 327
[11] Funk S, Gilad E, Watkins C and Jansen V A A 2009 Proc. Natl. Acad. Sci. USA 106 6872
[12] Herrero C P 2002 Phys. Rev. E 66 046126
[13] Lind P G, Da Silva L R, Andrade Jr J S and Herrmann H J 2007 Phys. Rev. E 76 036117
[14] Huang L, Park K and Lai Y C 2006 Phys. Rev. E 73 035103(R)
[15] Schwarzkopf Y, R醟os A and Mukamel D 2010 Phys. Rev. E 82 036112
[16] Agliari E, Burioni R, Cassi D and Neri F M 2006 Phys. Rev. E 73 046138
[17] Agliari E, Burioni R, Cassi D and Neri F M 2007 Phys. Rev. E 75 021119
[18] Adler F R and Gordon D M 1992 Am. Nat. 140 373
[19] Kim Y A, Przytycki J H, Wuchty S and Przytycka T M 2011 Phys. Biol. 8 035012
[20] Trpevski D, Tang W K S and Kocarev L 2010 Phys. Rev. E 81 056102
[1] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[4] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[5] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[6] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[7] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[8] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[11] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[12] Ergodicity recovery of random walk in heterogeneous disordered media
Liang Luo(罗亮), Ming Yi(易鸣). Chin. Phys. B, 2020, 29(5): 050503.
[13] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[14] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[15] Shortest path of temporal networks: An information spreading-based approach
Yixin Ma(马一心), Xiaoyu Xue(薛潇雨), Meng Cai(蔡萌), and Wei Wang(王伟). Chin. Phys. B, 2020, 29(12): 128902.
No Suggested Reading articles found!