Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040203    DOI: 10.1088/1674-1056/21/4/040203
GENERAL Prev   Next  

The element-free Galerkin method of numerically solving a regularized long-wave equation

Cheng Rong-Jun(程荣军)a)† and Ge Hong-Xia(葛红霞)b)
a. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
b. Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper.
Keywords:  element-free Galerkin method      meshless method      regularized long wave equation      solitary wave  
Received:  11 September 2011      Revised:  28 September 2011      Accepted manuscript online: 
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China(Grant No.Y6110007)
Corresponding Authors:  Cheng Rong-Jun, E-mail:chengrongjun76@126.com     E-mail:  chengrongjun76@126.com

Cite this article: 

Cheng Rong-Jun(程荣军) and Ge Hong-Xia(葛红霞) The element-free Galerkin method of numerically solving a regularized long-wave equation 2012 Chin. Phys. B 21 040203

[1] Donea J and Giuliani S 1974 Nucl. Eng. Des. 30 205
[2] Bathe K J and Khoshgoftaar M R 1979 Nucl. Eng. Des. 51 389
[3] Skerget P and Alujevic A 1983. Nucl. Eng. Des. 76 47
[4] Belytschko T, Krongauz Y and Organ D1996 Comput. Meth. Appl. Mech. Eng. 139 3
[5] Monaghan J J 1988 Comput. Phys. Commun. 48 89
[6] Wendland H 1999 Math. Comput. 68 1521
[7] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Meth. Engng. 37 229
[8] Liu W K, Jun S and Zhang Y F 1995 Int. J. Numer. Meth. Engng. 20 1081
[9] Cheng R J and Liew K M 2009 Comput. Mech. 45 1
[10] Atluri S N and Zhu T 1998 Comput. Mech. 22 117
[11] Cheng R J and Cheng Y M 2008 Appl. Numer. Math. 58 884
[12] Peregrine D H 1966 J. Fluid Mech. 25 321
[13] Peregrine D H 1966 J. Fluid Mech. 27 815
[14] Dodd R K and Eilbeck J C 1982 Solitons and Nonlinear Wave Equation (New York: Academic Press)
[15] Lewis J C and Tjon J A 1979 Phys. Lett. A 73 275
[16] Raslan K R 2005 Appl. Math. Comput. 168 795
[17] Gardner L R T and Gardner G A 1996 Commun. Numer. Mech. Eng. 12 795
[18] Gardner L R T 1990 J. Comput. Phys. 91 441
[19] Sloan D M 1991 J. Comput. Appl. Math. 36 159
[20] Araujo A 2001 Appl. Numer. Math. 36 197
[21] Duran A 2003 J. Phys. A: Math. Gen. 36 7761
[22] Bona J L 1994 J. Nonlinear Sci. 4 449
[23] Lu Z and Liu R 1998 Siam. J. Numer. Anal. 36 89
[24] Jain P C and Shanker R 1993 Commun. Numer. Mech. Eng. 9 579
[25] Zaki S I 2001 Phys. Commun. 138 80
[26] EI-Danaf T S and Ramadan M A 2005 Chaos, Solitons and Fractals 26 747
[27] Kaya D 2003 Chaos, Solitons and Fractals 17 869
[28] Shivamoggi B K 2002 Chaos, Solitons and Fractals 13 1129
[29] Ramos J I 1998 Appl. Math. Comput. 94 17
[30] Ramos J I 1999 Appl. Math. Comput. 103 69
[31] Ramos J I 2005 Appl. Math. Comput. 163 1123
[32] Ramos J I 2006 Appl. Math. Comput. 179 622
[33] Cheng Y M and Peng M J 2005 Sci. Chin. Ser. G: Phys. Mech. Astron. 48 641
[34] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese)
[35] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[35] Cheng R J and Cheng Y M 2007 Acta Phys. Sin. 56 5569 (in Chinese)
[37] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[38] Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese)
[39] Cheng R J and Cheng Y M 2008 Appl. Numer. Math. 58 884
[40] Chen Li and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[41] Chen Li and Cheng Y M 2008 Acta Phys. Sin. 57 5069 (in Chinese)
[42] Ren H P and Zhang W 2009 Chin. Phys. B 18 4065
[43] Cheng R J and Ge H X 2009 Chin. Phys. B 18 4059
[44] Wang J F, Sun F X and Cheng R J 2010 Chin. Phys. B 19 060201
[45] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090202
[46] Cheng R J and Ge H X 2010 Chin. Phys. B 19 090201
[47] Cheng Y M and Li J H 2006 Sci. Chin. Ser. G: Phys. Mech. Astron. 49 46
[48] Cheng Y M and Liew K M 2009 Int. J. Numer. Meth. Eng. 78 1258
[49] Gao H F and Cheng Y M 2010 Int. J. Comput. Meth. 7 55
[50] Wang J F and Cheng Y M 2011 Chin. Phys. B 20 030206
[51] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070304
[52] Cheng R J and Cheng Y M 2011 Acta Phys. Sin. 60 060206 (in Chinese)
[53] Rubin S G and Graves R A 1975 Computers and Fluids 3 1
[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Exact transverse solitary and periodic wave solutions in a coupled nonlinear inductor-capacitor network
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(9): 096301.
[5] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[6] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[7] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[8] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[9] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[10] Envelope solitary waves and their reflection and transmission due to impurities in a granular material
Wen-Qing Du(杜文青), Jian-An Sun(孙建安), Yang-Yang Yang(杨阳阳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(1): 014501.
[11] Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method
Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk. Chin. Phys. B, 2017, 26(8): 080202.
[12] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[13] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[14] Fully nonlinear (2+1)-dimensional displacement shallow water wave equation
Feng Wu(吴锋), Zheng Yao(姚征), Wanxie Zhong(钟万勰). Chin. Phys. B, 2017, 26(5): 054501.
[15] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
No Suggested Reading articles found!