Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 084203    DOI: 10.1088/1674-1056/20/8/084203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Quantum mechanical photoncount formula derived by entangled state representation

Hu Li-Yun(胡利云)a)†, Wang Zi-Sheng(王资生) a), L. C. Kwekb), and Fan Hong-Yi(范洪义) c)
a College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China; b Centre for Quantum Technologies, National University of Singapore, Singapore 117543; c Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  By introducing the thermo entangled state representation, we derive four new photocount distribution formulas for a given light field density operator. It is shown that these new formulas, which are convenient to calculate the photocount, can be expressed as integrations over a Laguerre-Gaussian function with a characteristic function, Wigner function, Q-function and P-function, respectively.
Keywords:  photo-counting distribution      entangled state representation  
Received:  16 January 2011      Revised:  09 March 2011      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11047133 and 60967002), the Key Program Foundation of Ministry of Education of China (Grant No. 210115), and the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ10097 and GJJ10404), and the Natural Science Foundation of Jiangxi Province of China (Grant No. 2010GQW0027).

Cite this article: 

Hu Li-Yun(胡利云), Wang Zi-Sheng(王资生), L. C. Kwek, and Fan Hong-Yi(范洪义) Quantum mechanical photoncount formula derived by entangled state representation 2011 Chin. Phys. B 20 084203

[1] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p. 623
[2] Glauber R J 1963 Phys. Rev. 130 2529
[3] Kelley P L and Kleiner W H 1964 Phys. Rev. 136 316
[4] Scully M O and Lamb W E 1969 Phys. Rev. 179 368
[5] Mollow B R 1968 Phys. Rev. 168 1896
[6] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[7] Fan H Y and Fan Y 2002 J. Phys. A: Math. Gen. 35 6873
[8] Memorial Issue for Umezawa H 1996 Int. J. Mod. Phys. B 10 1695, and references therein
[9] Umezawa H 1993 Advanced Field Theory—-Micro, Macro, and Thermal Physics (New York: AIP)
[10] Takahashi Y and Umezawa H 1975 Collective Phenomena 2 55
[11] Wünsche A 2001 J. Comput. Appl. Math. 133 665
[12] Wünsche A 2000 J. Phys. A: Math. Gen. 33 1603
[13] Hu L Y, Duan Z L, Xu X X and Wang Z S 2011 J. Phys. A: Math. Theor. 44 195304
[14] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[15] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D % 35 1831
[16] Wünsche A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 R11
[17] Wigner E 1932 Phys. Rev. 40 749
[18] Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific & Technical Press) (in Chinese)
[19] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303
[20] Hu L Y and Fan H Y 2009 Opt. Commun. 282 4379
[21] Hu L Y, Chen F, Wang Z S and Fan H Y 2011 Chin. Phys. B 20 074204
[22] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 902
[23] Fan H Y, Ren G, Hu L Y and Jiang N Q 2010 Chin. Phys. B 19 114206
[24] Puri R R 2001 Mathematical Method of Quantum Optics (Berlin: Springer-Verlag, Appendix A)
[25] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[4] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[5] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[6] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[7] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[8] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[9] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[12] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[13] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
[14] Time evolution of distribution functions in dissipative environments
Hu Li-Yun(胡利云), Chen Fei(陈菲), Wang Zi-Sheng(王资生), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2011, 20(7): 074204.
[15] A new finite-dimensional thermal coherent state and its Wigner distribution function
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙) . Chin. Phys. B, 2011, 20(1): 014204.
No Suggested Reading articles found!