|
|
Effect of reagent vibrational excitation and isotope substitution on the stereo-dynamics of the Ba + HF → BaF + H reaction |
Zhao Juan(赵娟)† and Luo Yi(罗一) |
School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract Based on an extended London–Eyring–Polanyi–Sato (LEPS) potential energy surface (PES), the Ba + HF reaction has been studied by the quasi-classical trajectory (QCT) method. The reaction integral cross section as a function of collision energy for the Ba + HF → BaF + H reaction is presented and the influence of isotope substitution on the differential cross sections (DCSs) and alignments of the product's rotational angular momentum have also been studied. The results suggest that the integral cross sections increase with increasing collision energy, and the vibrational excitation of the reagent has great influence on the DCS. In addition, the product's rotational polarization is very strong as a result of heavy–heavy–light (HHL) mass combination, and the distinct effect of isotope substitution on the stereodynamics is also revealed.
|
Received: 26 October 2010
Revised: 04 January 2011
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.-w
|
(Chemical kinetics and dynamics)
|
|
82.20.Pm
|
(Rate constants, reaction cross sections, and activation energies)
|
|
Cite this article:
Zhao Juan(赵娟) and Luo Yi(罗一) Effect of reagent vibrational excitation and isotope substitution on the stereo-dynamics of the Ba + HF → BaF + H reaction 2011 Chin. Phys. B 20 043402
|
[1] |
Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
|
[2] |
Wang M L, Han K L, Zhan J P, Victor Wu W K, He G Z and Lou N Q 1997 Chem. Phys. Lett. 278 307
|
[3] |
Han K L, He G Z and Lou N Q 1992 J. Chem. Phys. 96 7865
|
[4] |
Li W L, Wang M S, Yang C L, Guang M X, Wang D H and Liu W W 2007 Chem. Phys. Lett. 125 445
|
[5] |
Li W L, Wang M S, Dong Y M and Yang C L 2008 Chem. Phys. 97 348
|
[6] |
Xu W W, Liu X G and Zhang Q G 2008 Mol. Phys. 106 1787
|
[7] |
Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 1674
|
[8] |
Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
|
[9] |
Zhao J, Xu Y and Meng Q T 2009 Can. J. Phys. 87 1247
|
[10] |
Zhao J, Xu Y and Meng Q T 2010 Sci. Chin. Chem. 53 927
|
[11] |
Zhao J, Xu Y, Yue D G and Meng Q T 2009 Chem. Phys. Lett. 471 160
|
[12] |
Xu Y, Zhao J, Wang J, Liu F and Meng Q T 2010 Acta Phys. Sin. 59 144 (in Chinese)
|
[13] |
Xu X S, Zhang W Q, Jin K and Yin S H 2010 Acta Phys. Sin. 59 7814 (in Chinese)
|
[14] |
Liu X G, Sun H Z, Liu H R and Zhang Q G 2010 Acta Phys. Sin. 59 7802 (in Chinese)
|
[15] |
Zhu T, Hu G D, Chen J Z, Liu, X G and Zhang Q G 2010 Chin. Phys. B 19 083402
|
[16] |
Luo W L, Ruan W, Zhang L, Zhu Z H and Fu Y B 2009 Chin. Phys. B 18 167
|
[17] |
Kong H, Liu X G, Xu W W, Liang J J and Zhang Q G 2009 Chin. Phys. B 18 5308
|
[18] |
Cao W B, Rudert A D, Martin J, Zacharias H and Halpern J B 1999 Acta Phys. Sin. 48 862 (in Chinese)
|
[19] |
Mims A, Lin S M and Hem R R 1972 J. Chem. Phys. 57 3099
|
[20] |
Torres-Filho A and Pruett J G 1982 J. Chem. Phys. 77 1774
|
[21] |
Cruse H W, Dagdigian P J and Zare R N 1973 Faraday Discuss. Chem. Soc. 55 277
|
[22] |
Pruett J G and Zare R N 1976 J. Chem. Phys. 64 1774
|
[23] |
Gupta A, Perry D S and Zare R N 1980 J . Chem. Phys. 76 237
|
[24] |
Zare R N 1979 Faraday Discuss. Chem. Soc. 67 7
|
[25] |
Feldman D, Lengel R K and Zare R N 1977 Chem. Phys. Lett. 52 413
|
[26] |
Cai M Q, Zhang L, Tang B Y, Chen M D, Yang G W and Han K L 2000 Chem. Phys. 283 255
|
[27] |
Noda C, Mckillop J S, Johnson M A, Waldeck J R and Zare R N 1986 J. Chem. Phys. 85 856
|
[28] |
Zhao D and Zare R N 1992 J. Chem. Phys. 97 6208
|
[29] |
Tsekouras A A, Leach C A, Kalogerakis K S and Zare R N 1992 J. Chem. Phys. 97 720
|
[30] |
Teule J M, Mes J, Jassen M H N and Stolte S 2000 J. Chem. Phys. 856 85
|
[31] |
Altkom R, Bartoszek F E, DeHaven J, Hancock G, Perry D S and Zare R N 1983 Chem. Phys. Lett. 98 212
|
[32] |
Karny Z, Estler R C and Zare R N 1969 J. Chem. Phys. 69 5199
|
[33] |
Gupta A, Perry D S and Zare R N 1980 J. Chem. Phys. 72 6250
|
[34] |
Karny Z and Zare R N 1978 J. Chem. Phys. 68 3360
|
[35] |
Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 2000 Chem. Phys. Lett. 181 474
|
[36] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[37] |
Han K L, He G H and Lou N Q 1993 Chin. J. Chem. Phys. 6 95 (in Chinese)
|
[38] |
Han K L, Xu D L, He G Z and Lou N Q 1998 Chin. J. Chem. Phys. 11 1 (in Chinese)
|
[39] |
Han K L, He G H and Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese)
|
[40] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 6699
|
[41] |
Han K L, He G Z and Lou N Q 1996 Chin. J. Chem. Phys. 9 481 (in Chinese)
|
[42] |
Zhang X, Xie T X, Zhao M Y and Han K L 2002 Chin. J. Chem. Phys. 15 169 (in Chinese)
|
[43] |
Liu Y F, Gao Y L, Zhai H S and Liu R Q 2008 J. At. Mol. Phys. 25 1063 (in Chinese)
|
[44] |
Zhang X and Han K L 2006 Int. Quantum Chem. 106 1815
|
[45] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[46] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[47] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[48] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
|
[49] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[50] |
Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
|
[51] |
Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
|
[52] |
Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
|
[53] |
Ju L P, Han K L and John Zhang Z H 2009 J. Comput. Chem. 30 305
|
[54] |
Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323 (in Chinese)
|
[55] |
Lin S Y, Han K L and John Zhang Z H 2000 Chem. Phys. Lett. 324 122 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|