Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 043402    DOI: 10.1088/1674-1056/20/4/043402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of reagent vibrational excitation and isotope substitution on the stereo-dynamics of the Ba + HF → BaF + H reaction

Zhao Juan(赵娟) and Luo Yi(罗一)
School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
Abstract  Based on an extended London–Eyring–Polanyi–Sato (LEPS) potential energy surface (PES), the Ba + HF reaction has been studied by the quasi-classical trajectory (QCT) method. The reaction integral cross section as a function of collision energy for the Ba + HF → BaF + H reaction is presented and the influence of isotope substitution on the differential cross sections (DCSs) and alignments of the product's rotational angular momentum have also been studied. The results suggest that the integral cross sections increase with increasing collision energy, and the vibrational excitation of the reagent has great influence on the DCS. In addition, the product's rotational polarization is very strong as a result of heavy–heavy–light (HHL) mass combination, and the distinct effect of isotope substitution on the stereodynamics is also revealed.
Keywords:  quasi-classical trajectory method      London–Eyring–Polanyi–Sato potential energy surface      vibrational excitation of the reagent      isotope substitution  
Received:  26 October 2010      Revised:  04 January 2011      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  82.20.-w (Chemical kinetics and dynamics)  
  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  

Cite this article: 

Zhao Juan(赵娟) and Luo Yi(罗一) Effect of reagent vibrational excitation and isotope substitution on the stereo-dynamics of the Ba + HF → BaF + H reaction 2011 Chin. Phys. B 20 043402

[1] Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
[2] Wang M L, Han K L, Zhan J P, Victor Wu W K, He G Z and Lou N Q 1997 Chem. Phys. Lett. 278 307
[3] Han K L, He G Z and Lou N Q 1992 J. Chem. Phys. 96 7865
[4] Li W L, Wang M S, Yang C L, Guang M X, Wang D H and Liu W W 2007 Chem. Phys. Lett. 125 445
[5] Li W L, Wang M S, Dong Y M and Yang C L 2008 Chem. Phys. 97 348
[6] Xu W W, Liu X G and Zhang Q G 2008 Mol. Phys. 106 1787
[7] Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 1674
[8] Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
[9] Zhao J, Xu Y and Meng Q T 2009 Can. J. Phys. 87 1247
[10] Zhao J, Xu Y and Meng Q T 2010 Sci. Chin. Chem. 53 927
[11] Zhao J, Xu Y, Yue D G and Meng Q T 2009 Chem. Phys. Lett. 471 160
[12] Xu Y, Zhao J, Wang J, Liu F and Meng Q T 2010 Acta Phys. Sin. 59 144 (in Chinese)
[13] Xu X S, Zhang W Q, Jin K and Yin S H 2010 Acta Phys. Sin. 59 7814 (in Chinese)
[14] Liu X G, Sun H Z, Liu H R and Zhang Q G 2010 Acta Phys. Sin. 59 7802 (in Chinese)
[15] Zhu T, Hu G D, Chen J Z, Liu, X G and Zhang Q G 2010 Chin. Phys. B 19 083402
[16] Luo W L, Ruan W, Zhang L, Zhu Z H and Fu Y B 2009 Chin. Phys. B 18 167
[17] Kong H, Liu X G, Xu W W, Liang J J and Zhang Q G 2009 Chin. Phys. B 18 5308
[18] Cao W B, Rudert A D, Martin J, Zacharias H and Halpern J B 1999 Acta Phys. Sin. 48 862 (in Chinese)
[19] Mims A, Lin S M and Hem R R 1972 J. Chem. Phys. 57 3099
[20] Torres-Filho A and Pruett J G 1982 J. Chem. Phys. 77 1774
[21] Cruse H W, Dagdigian P J and Zare R N 1973 Faraday Discuss. Chem. Soc. 55 277
[22] Pruett J G and Zare R N 1976 J. Chem. Phys. 64 1774
[23] Gupta A, Perry D S and Zare R N 1980 J . Chem. Phys. 76 237
[24] Zare R N 1979 Faraday Discuss. Chem. Soc. 67 7
[25] Feldman D, Lengel R K and Zare R N 1977 Chem. Phys. Lett. 52 413
[26] Cai M Q, Zhang L, Tang B Y, Chen M D, Yang G W and Han K L 2000 Chem. Phys. 283 255
[27] Noda C, Mckillop J S, Johnson M A, Waldeck J R and Zare R N 1986 J. Chem. Phys. 85 856
[28] Zhao D and Zare R N 1992 J. Chem. Phys. 97 6208
[29] Tsekouras A A, Leach C A, Kalogerakis K S and Zare R N 1992 J. Chem. Phys. 97 720
[30] Teule J M, Mes J, Jassen M H N and Stolte S 2000 J. Chem. Phys. 856 85
[31] Altkom R, Bartoszek F E, DeHaven J, Hancock G, Perry D S and Zare R N 1983 Chem. Phys. Lett. 98 212
[32] Karny Z, Estler R C and Zare R N 1969 J. Chem. Phys. 69 5199
[33] Gupta A, Perry D S and Zare R N 1980 J. Chem. Phys. 72 6250
[34] Karny Z and Zare R N 1978 J. Chem. Phys. 68 3360
[35] Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 2000 Chem. Phys. Lett. 181 474
[36] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[37] Han K L, He G H and Lou N Q 1993 Chin. J. Chem. Phys. 6 95 (in Chinese)
[38] Han K L, Xu D L, He G Z and Lou N Q 1998 Chin. J. Chem. Phys. 11 1 (in Chinese)
[39] Han K L, He G H and Lou N Q 1998 Chin. J. Chem. Phys. 11 525 (in Chinese)
[40] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 6699
[41] Han K L, He G Z and Lou N Q 1996 Chin. J. Chem. Phys. 9 481 (in Chinese)
[42] Zhang X, Xie T X, Zhao M Y and Han K L 2002 Chin. J. Chem. Phys. 15 169 (in Chinese)
[43] Liu Y F, Gao Y L, Zhai H S and Liu R Q 2008 J. At. Mol. Phys. 25 1063 (in Chinese)
[44] Zhang X and Han K L 2006 Int. Quantum Chem. 106 1815
[45] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[46] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[47] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[48] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[49] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[50] Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
[51] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
[52] Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
[53] Ju L P, Han K L and John Zhang Z H 2009 J. Comput. Chem. 30 305
[54] Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323 (in Chinese)
[55] Lin S Y, Han K L and John Zhang Z H 2000 Chem. Phys. Lett. 324 122 endfootnotesize
[1] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[2] Theoretical study of stereodynamics for the N+H2/D2/T2 reactions
Li Yong-Qing (李永庆), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Chi Xiao-Lin (迟晓琳), Ding Yong (丁勇), Ma Feng-Cai (马凤才). Chin. Phys. B, 2014, 23(12): 123401.
[3] The effect of collision energy on the stereo-dynamics of the reaction H(2S)+NH(X3-, v=0, j=0)→N(4S)+H2
He Di (何缔), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Jiang Zhi-Jun (姜志军). Chin. Phys. B, 2013, 22(6): 068201.
[4] Stereodynamics of the O(3P) with H2 (D2) ($\nu$=0, j=0) reaction
Liu Yu-Fang(刘玉芳), He Xiao-Hu(和小虎), Shi De-Heng(施德恒), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2011, 20(7): 078201.
[5] Influence of rotational excitation and collision energy on the stereo dynamics of the reaction: N(4S)+H2 (v = 0, j = 0, 2, 5, 10)→NH(X3$\Sigma$-)+H
Yu Yong-Jiang(于永江), Xu Qiang(徐强), and Xu Xiu-Wei(徐秀玮) . Chin. Phys. B, 2011, 20(12): 123402.
[6] Stereodynamics study of reactions N(2D)+HD→NH+D and ND+H
Yue Xian-Fang(岳现房), Cheng Jie(程杰), Li Hong(李宏), Zhang Yong-Qiang(张永强), and Emilia L. Wu . Chin. Phys. B, 2010, 19(4): 043401.
[7] Theoretical study of the stereodynamics of the He+HD+ reaction
Xu Wen-Wu(许文武), Liu Xin-Guo(刘新国), Luan Shi-Xia(栾仕霞), Sun Shan-Shu(孙善书), and Zhang Qing-Gang(张庆刚). Chin. Phys. B, 2009, 18(1): 339-343.
No Suggested Reading articles found!