Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 028701    DOI: 10.1088/1674-1056/20/2/028701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A new level set model for cell image segmentation

Ma Jing-Feng(马竟锋)a), Hou Kai(侯凯) c), Bao Shang-Lian(包尚联)b)c), and Chen Chun(陈纯)a)†
a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; b Beijing Key Lab of Medical Physics and Engineering, Peking University, Beijing 100871, China; c Beijing Healthway Technology Limited Company, Beijing 100084, China
Abstract  In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.
Keywords:  cell image segmentation      3-phase      level set      OTSU algorithm  
Received:  23 August 2010      Revised:  21 September 2010      Accepted manuscript online: 
PACS:  87.57.nm (Segmentation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB707701), the National Natural Science Foundation of China (Grant No. 60873124), the Joint Research Foundation of Beijing Education Committee (Grant No. JD100010607), the International Science and Technology Supporting Programme (Grant No. 2008BAH26B00), and the Zhejiang Service Robot Key Laboratory (Grant No. 2008E10004).

Cite this article: 

Ma Jing-Feng(马竟锋), Hou Kai(侯凯), Bao Shang-Lian(包尚联), and Chen Chun(陈纯) A new level set model for cell image segmentation 2011 Chin. Phys. B 20 028701

[1] Lian L J and Ling Q Z 2006 Gynecologic Oncology (Beijing: People's Medical Publishing House) p. 289 (in Chinese)
[2] John L Semmlow 2004 Biosignal and Biomedical Image Processing (New York: Marcel Derkker, Inc) p. 343
[3] Stanley Osher and James A Sethian 1988 J. Comput. Phys. 79 12
[4] Tony Chan and Luminita Vese 2001 IEEE Trans. Image Processing 10 266
[5] Luminita Vese and Tony Chan 2002 Int. J. Comput Vis. 50 271
[6] Zhao G Z 2010 Chin. Phys. B 19 070203
[7] Li C M 2008 IEEE Trans. Image Processing 17 1940
[8] Caselles V 1997 Int. J. Comput. Vis. 22 61
[9] Kass M 1987 Int. J. Comput. Vis. 1 321
[10] Kichenassamy S 1995 Proc. 5th Int. Conf. Comput. Vis. 8 10
[11] Kimmel R 1995 IEEEE Trans. Pattern Anal. Match. Intell. 17 635
[12] Vasilevskiy A 2002 IEEE Trans. Pattern Anal. Mach. Intell. 24 1565
[13] Paragios N 2002 Int. J. Comput. Vis. 46 223
[14] Ronfard R 1994 Int. J. Comput. Vis. 13 229
[15] Samson C 2000 IEEE Trans. Patt. Anal. Mach. Intell. 22 460
[16] Duan C J 2009 J. Software 20 1106
[17] Zhang K H 2010 Image and Vision Computing 28 668
[18] Siddhartha Bhattacharyya 2011 Appl. Soft. Computing 11 946
[19] Li C M 2005 Proc. IEEE. Conf. Comput. Vision and Pattern Recognition 1 430
[20] Li C M 2007 CVPR 1
[21] Mumford D and Shah J 1989 Commun. Pure Appl. Math. 42 577 endfootnotesize
[1] Application of radial basis functions to evolution equations arising in image segmentation
Li Shu-Ling (李淑玲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(2): 028702.
No Suggested Reading articles found!