Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 023701    DOI: 10.1088/1674-1056/20/2/023701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Cooling of rubidium atoms in pulsed diffuse laser light

Cheng Hua-Dong(成华东), Wang Xu-Cheng(王旭成), Xiao Ling(肖玲), Zhang Wen-Zhuo(张文卓), Liu Liang(刘亮), and Wang Yu-Zhu(王育竹)
Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  This paper reports an experiment on laser cooling of 87Rb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process based on the loading of cold atoms in cooling time and the loss in the dead time, which is in agreement with the experimental data. The formula gives a reference to select the parameters for the cold atom clock.
Keywords:  diffuse light      pulsed cooling      rubidium      atom clock  
Received:  12 April 2010      Revised:  12 August 2010      Accepted manuscript online: 
PACS:  37.10.De (Atom cooling methods)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10604057 and 10874193), the National High-Tech Programme (Grant No. 2006AA12Z311) and the National Basic Research Programme of China (Grant No. 2005CB724506).

Cite this article: 

Cheng Hua-Dong(成华东), Wang Xu-Cheng(王旭成), Xiao Ling(肖玲), Zhang Wen-Zhuo(张文卓), Liu Liang(刘亮), and Wang Yu-Zhu(王育竹) Cooling of rubidium atoms in pulsed diffuse laser light 2011 Chin. Phys. B 20 023701

[1] Guillot E, Pottie P E and Dimarcq N 2001 Opt. Lett. 26 1639
[2] Cheng H D, Zhang W D, Ma H Y, Liu L and Wang Y Z 2009 Phys. Rev. A 79 0234071
[3] Tremine S, Guerandel S, Holleville D, Clairon A and Dimarcq N 2004 in Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition (Montreal: the Institute of Electrical and Electronics Engineers) p. 65
[4] Tremine S, Guerandel S, Holleville D, Delporte J, Dimarcq N and Clairon A 2005 in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition (Vancouver: the Institute of Electrical and Electronics Engineers) p. 111
[5] Esnault F X, Perrin S, Tremine S, Guerandel S, Holleville D, Dimarcq N, Hermann V and Delporte J 2007 in Proceedings of the 2007 IEEE International Frequency Control Symposium, Joint with the 21st European Frequency and Time Forum (Geneva: Switzerland) the Institute of Electrical and Electronics Engineers p. 1342
[6] Esnault F X, Perrin S, Holleville D, Guerandel S, Dimarcq N and Delporte J 2008 in Proceedings of the 7th Symposium on Frequency Standards and Metrology (IEEE) p. 381
[7] Zhang W Z, Wang X C, Cheng H D, Xiao L, Liu L and Wang Y Z 2009 em Chin. Phys. Lett. 26 0837031
[8] Zhang W Z, Cheng H D, Liu L and Wang Y Z 2009 Phys. Rev. A 79 0538041
[9] Ma H Y, Cheng H D, Zhang W Z, Liu L and Wang Y Z 2009 Acta Phys. Sin. 58 1569 (in Chinese)
[10] Xiao L, Wang X C, Cheng H D, Zhang W Z, Liu L and Wang Y Z 2010 em Chin. Opt. Lett. 8 1 endfootnotesize
[1] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[2] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[3] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[4] A 795 nm gain coupled distributed feedback semiconductor laser based on tilted waveguides
De-Zheng Ma(马德正), Yong-Yi Chen(陈泳屹), Yu-Xin Lei(雷宇鑫), Peng Jia(贾鹏), Feng Gao(高峰), Yu-Gang Zeng(曾玉刚), Lei Liang(梁磊), Yue Song(宋悦), Chun-Kao Ruan(阮春烤), Xia Liu(刘夏), Li Qin(秦莉), Yong-Qiang Ning(宁永强), and Li-Jun Wang(王立军). Chin. Phys. B, 2021, 30(5): 050505.
[5] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[6] Laser frequency offset-locking using electromagnetically induced transparency spectroscopy of 85Rb in magnetic field
Han-Mu Wang(王汉睦), Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(9): 094205.
[7] Automatic compensation of magnetic field for a rubidium space cold atom clock
Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(7): 073201.
[8] Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions
Jian Ma(马健), Ping Shi(史平), Xuan Qian(钱轩), Wei Li(李伟), Yang Ji(姬扬). Chin. Phys. B, 2016, 25(11): 117203.
[9] Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard
Liu Chang (刘畅), Wang Yan-Hui (王延辉). Chin. Phys. B, 2015, 24(1): 010602.
[10] Nonradiative charge transfer in collisions of protons with rubidium atoms
Yan Ling-Ling(闫玲玲), Qu Yi-Zhi(屈一至), Liu Chun-Hua(刘春华), Zhang Yu(张宇), Wang Jian-Guo(王建国), and Buenker Robert J . Chin. Phys. B, 2012, 21(6): 063401.
[11] The near-infrared spectra and distribution of excited states of electrodeless discharge rubidium vapour lamps
Sun Qin-Qing(孙钦青), Miao Xin-Yu(缪新育) Sheng Rong-Wu(盛荣武), and Chen Jing-Biao(陈景标) . Chin. Phys. B, 2012, 21(3): 033201.
[12] Study of a low power dissipation, miniature laser-pumped rubidium frequency standard
Liu Guo-Bin(刘国宾), Zhao Feng(赵峰), and Gu Si-Hong(顾思洪). Chin. Phys. B, 2009, 18(9): 3839-3843.
No Suggested Reading articles found!