Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 128901    DOI: 10.1088/1674-1056/20/12/128901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhancing the synchronizability of networks by rewiring based on tabu search and a local greedy algorithm

Yang Cui-Li(杨翠丽) and Tang Kit-Sang(鄧榤生)
Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
Abstract  By considering the eigenratio of the Laplacian matrix as the synchronizability measure, this paper presents an efficient method to enhance the synchronizability of undirected and unweighted networks via rewiring. The rewiring method combines the use of tabu search and a local greedy algorithm so that an effective search of solutions can be achieved. As demonstrated in the simulation results, the performance of the proposed approach outperforms the existing methods for a large variety of initial networks, both in terms of speed and quality of solutions.
Keywords:  synchronizability      network rewiring      tabu search      local greedy      complex networks  
Received:  08 April 2011      Revised:  19 July 2011      Accepted manuscript online: 
PACS:  89.75.-k (Complex systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the grant from City University of Hong Kong (Grant No. 7008105).

Cite this article: 

Yang Cui-Li(杨翠丽) and Tang Kit-Sang(鄧榤生) Enhancing the synchronizability of networks by rewiring based on tabu search and a local greedy algorithm 2011 Chin. Phys. B 20 128901

[1] Pastor S R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[2] Klemm K, Eguiluz V M, Toral R and Miguel M S 2003 Phys. Rev. E 67 026120
[3] Trpevski D, Tang W K S and Kocarev L 2010 Phys. Rev. E bf 81 056102
[4] Tse C K, Liu J, Lau F C M and He K 2010 J. Empir. Finance 17 2099
[5] Saber R O and Murray R M 2004 IEEE Trans. Autom. Control 49 1520
[6] Arenas A, Guilera A D, Kurths J, Moreno Y and Zhou C S 2008 it Phys. Rep. 469 93
[7] Li Z Q, Duan Z S and Chen G R 2009 Chin. Phys. B 18 1674
[8] Zou Y L and Chen G R 2009 Chin. Phys. B 18 3337
[9] Tu L L 2011 Chin. Phys. B 20 030504
[10] Milanese A, Sun J and Nishikawa T 2010 Phys. Rev. E 81 046112
[11] Zhao M, Chen G R, Zhou T and Wang B H 2007 Front. Phys. bf 2 460
[12] Jalili M, Rad A A and Hasler M 2008 Phys. Rev. E 78 016105
[13] Jalili M and Rad A A 2009 Chaos 19 028101
[14] Feng C F, Xu X J, Wu Z X and Wang Y H 2008 Chin. Phys. B bf 17 1951
[15] Ma X J, Wang Y and Zheng Z G 2009 Acta Phys. Sin. 58 4426 (in Chinese)
[16] Duan Z S, Wang W X, Liu C and Chen G R 2009 Chin. Phys. B bf 18 3122
[17] Korniss G, Novotny M A, Guclu H, Toroczkai Z and Rikvold P A 2003 Science 299 677
[18] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[19] Chavez M, Hwang D U, Amann A, Hentschel H G E and Boccaletti B 2005 Phys. Rev. Lett. 94 218701
[20] Wang X, Lai Y C and Lai C H 2007 Phys. Rev. E 75 056205
[21] Donetti L, Hurtado P I and Munoz M A 2005 Phys. Rev. E bf 95 188701
[22] Donetti L, Neri F and Munoz M A 2006 J. Stat. Mech.: Theor. Exp. 8 P08007
[23] Donetti L, Hurtado P I and Munoz M A 2008 J. Phys. A: Math. Theor. 41 224008
[24] Rad A A, Jalili M and Haslerc M 2008 Chaos 18 037104
[25] Hagberg A and Schult D A 2008 Chaos 18 037105
[26] Wang L F, Wang Q L, Kong Z and Jing Y W 2010 Chin. Phys. B 19 080207
[27] Wang B, Zhou T, Xiu Z L and Kim B J 2007 Phys. J. B 60 89
[28] Mishkovski I, Righero M, Biey M and Kocarev L 2010 it Proceedings of 2010 IEEE International Symposium on Circuits and Systems Paris, May, p. 681
[29] Watanabe T and Masuda N 2010 Phys. Rev. E 82 046102
[30] Lu W 2007 Chaos 17 023122
[31] Barabsi A L and Albert R 1999 Science 286 509
[32] Watts D and Strogatz S 1998 Nature 393 440
[34] Holme P and Kim B J 2002 Phys. Rev. E 65 026107
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!