Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114207    DOI: 10.1088/1674-1056/20/11/114207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Stationary properties of a single-mode laser system with non-Gaussian and Gaussian noise

Wang Bing(王兵) and Wu Xiu-Qing(吴秀清)
Department of Physics and Mathematics, Anhui University of Science and Technology, Huainan 232001, China
Abstract  A single-mode laser system with non-Gaussian and Gaussian noise is investigated. The stationary mean value and the normalized variance of the laser intensity are numerically calculated under the condition that the stationary probability distribution function (SPDF) is derived. The SPDF as a function of the laser intensity exhibits a maximum. The maximum becomes smaller with the increase of the correlation intensity or the non-Gaussian parameter, where the later is a measure of the deviation from the Gaussian characteristic. The maximum becomes larger as the correlation time increases. The laser intensity stationary mean value decreases with the increase of the correlation intensity or the non-Gaussian parameter while increases with the correlation time increasing. The laser intensity normalized variance increases with the increase of the correlation intensity or the non-Gaussian parameter while decreases as the correlation time increases.
Keywords:  single-mode laser      non-Gaussian noise      Gaussian noise  
Received:  28 November 2010      Revised:  19 June 2011      Accepted manuscript online: 
PACS:  42.55.Ah (General laser theory)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  42.60.Mi (Dynamical laser instabilities; noisy laser behavior)  

Cite this article: 

Wang Bing(王兵) and Wu Xiu-Qing(吴秀清) Stationary properties of a single-mode laser system with non-Gaussian and Gaussian noise 2011 Chin. Phys. B 20 114207

[1] Madureira A J R, Hanggi P and Wio H S 1996 Phys. Lett. A 217 248
[2] Jia Y, Zheng X P, Hu X M and Li J R 2001 Phys. Rev. E bf63 031107
[3] Mei D, Xie C and Zhang L 2003 Phys. Rev. E 68 051102
[4] Wang J, Cao L and Wu D J 2003 Phys. Lett. A 308 23
[5] Luo X Q and Zhu S Q 2004 Chin. Phys. 13 1201
[6] Yang J H and Liu X B 2010 Chin. Phys. B 19 050504
[7] Mei D C, Xie C W and Zhang L 2004 Eur. Phys. J. B 41 107
[8] Yi M, Jia Y, Ma J, Tang J, Yu G and Li J 2008 Phys. Rev. E 77 022902
[9] Jia Y, Liu W, Li A, Yang L and Zhan X 2009 Biophys. Chem. 143 60
[10] Zhang L, Cao L and Wu D J 2008 Phys. Rev. A 77 015801
[11] Wang B, Yan S and Wu X 2009 Acta Phys. Sin. 58 5191 (in Chinese)
[12] Zhu S 1993 Phys. Rev. A 47 2405
[13] Zhang L, Cao L and Wu D J 2004 Physica A 332 207
[14] Chen L M, Cao L and Wu D J 2007 Chin. Phys. 16 123
[15] Wang B and Wu X 2007 Chin. Opt. Lett. 5 288
[16] Xiang Y L and Mei D C 2009 Phys. Lett. A 373 1325
[17] Jin G X, Zhang L Y and Cao L 2009 Chin. Phys. B 18 0952
[18] Cao L, Wu D J and Ke S Z 1995 Phys. Rev. E 52 3228
[19] Xiang Y L and Mei D C 2008 Phys. Scr. 77 065003
[20] Xu D H, Cao L, Wu D J and Cheng Q H 2005 Chin. Opt. Lett. 3 348
[21] Luo X, Zhu S and Chen X 2001 Phys. Lett. A 287 111
[22] Cao L and Wu D J 2006 Phys. Rev. A 73 023802
[23] Tsallis C 1988 J. Stat. Phys. bf52 479
[24] Borland L 1998 Phys. Lett. A 245 67
[25] Fuentes M A, Wio H S and Toral R 2002 Physica A 303 91
[26] Li D X, Xu W, Guo Y F and Li G J 2008 Commun. Theor. Phys. 50 669
[27] Guo P R, Xu W and Liu D 2010 Chin. Phys. B 19 030520
[28] Fuentes M A, Toral R and Wio H S 2001 Physica A 295 114
[29] Goswami G, Majee P, Ghosh P K and Bag B C 2007 Physica A 374 549
[30] Wu D and Zhu S Q 2007 Phys. Lett. A 363 202
[31] Zhang H, Xu W and Xu Y 2009 Physica A 388 781
[32] Guo P R, Xu W and Liu D 2010 Chin. Phys. B 19 030520
[33] Xie C W and Mei D C 2004 Phys. Lett. A 323 421
[34] Tsallis C, Mendes R S and Plastino A R 1998 Physica A 261 534
[35] Gardiner C W 1985 Handbook of Stochastic Methods (2nd ed.) (Berlin: Springer) p. 74
[36] Fuentes M A, Wio H S and Toral R 2002 Physica A 303 91
[37] Novikov E A 1964 Zh. Eksp. Teor. Fiz. 47 1919
[38] Fox R F 1986 Phys. Rev. A 34 4525
[1] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[2] Effects of non-Gaussian noise on the dynamical properties of a logistic system
Wang Can-Jun (王参军). Chin. Phys. B, 2013, 22(6): 060502.
[3] Ballistic diffusion induced by non-Gaussian noise
Qin Li (覃莉), Li Qiang (李强). Chin. Phys. B, 2013, 22(3): 038701.
[4] Effects of non-Gaussian noise on a calcium oscillation system
Wang Bing (王兵), Sun Ya-Qin (孙雅琴), Tang Xu-Dong (唐旭东). Chin. Phys. B, 2013, 22(1): 010501.
[5] Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms
Jiang Li-Li (蒋莉莉), Luo Xiao-Qin (罗晓琴), Wu Dan (吴丹), Zhu Shi-Qun (朱士群). Chin. Phys. B, 2012, 21(9): 090503.
[6] Upper bound for the time derivative of entropy for a stochastic dynamical system with double singularities driven by non-Gaussian noise
Guo Pei-Rong(郭培荣), Xu Wei(徐伟), and Liu Di(刘迪). Chin. Phys. B, 2010, 19(3): 030520.
[7] Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises
Jin Guo-Xiang(金国祥), Zhang Liang-Ying(张良英), and Cao Li(曹力). Chin. Phys. B, 2009, 18(3): 952-957.
[8] The statistical fluctuation of a single-mode laser system driven by coloured pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts
Xu Dai-Hai (徐大海), Cheng Qing-Hua (程庆华), Cao Li (曹力), Wu Da-Jin (吴大进). Chin. Phys. B, 2006, 15(10): 2324-2331.
[9] Time evolution of the intensity correlation function in a single-mode laser driven by both the coloured pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts
Cheng Qing-Hua (程庆华), Cao Li (曹力), Xu Da-Hai (徐大海), Wu Da-Jin (吴大进). Chin. Phys. B, 2005, 14(6): 1159-1167.
[10] Modulated stochastic multiresonance in single-mode laser system without input periodic signal
Liang Gui-Yun (梁贵云), Cao Li (曹力), Wu Da-Jin (吴大进). Chin. Phys. B, 2003, 12(10): 1105-1108.
[11] Statistical properties of a single-mode laser driven by additive and multiplicative coloured noises with a coloured cross-correlation for different correlation times
Liang Gui-Yun (梁贵云), Cao Li (曹力), Zhang Li (张莉), Wu Da-Jin (吴大进). Chin. Phys. B, 2003, 12(10): 1109-1119.
[12] New amplitude equation of single-mode laser
Zhang Li (张 莉), Cao Li (曹 力), Wu Da-Jin (吴大进). Chin. Phys. B, 2003, 12(1): 33-38.
No Suggested Reading articles found!