Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 011101    DOI: 10.1088/1674-1056/20/1/011101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Prev   Next  

Noether's theory of Lagrange systems in discrete case

Lü Hong-Sheng(吕洪升)a), Zhang Hong-Bin(张宏彬)b)†, and Gu Shu-Long(顾书龙)b)
a Department of Mathematics, Chaohu University, Chaohu 238000, China; b Department of Physics , Chaohu University, Chaohu 238000, China
Abstract  In this paper, Noether theory of Lagrange systems in discrete case are studied. First, we briefly overview the well-known Noether theory of Lagrange system in the continuous case. Then, we introduce some definitions and notations, such as the operators of discrete translation to the right and the left and the operators of discrete differentiation to the right and the left, and give the conditions for the invariance of the difference functional on the uniform lattice and the non-uniform one, respectively. We also deduce the discrete analog of the Noether-type identity. Finally, the discrete analog of Noether's theorem is presented. An example was discussed to illustrate these results.
Keywords:  discrete Lagrange system      difference functional      Noether-type identity      Noether-type theorem  
Received:  28 February 2010      Revised:  01 July 2010      Accepted manuscript online: 
PACS:  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10872037) and the Natural Science Foundation of Anhui Province, China (Grant No. 070416226).

Cite this article: 

Lü Hong-Sheng(吕洪升), Zhang Hong-Bin(张宏彬), and Gu Shu-Long(顾书龙) Noether's theory of Lagrange systems in discrete case 2011 Chin. Phys. B 20 011101

[1] Noether A E 1918 Nachr . Akad. Wiss. Gottingen Math. Phys. KI II 235
[2] Li Z P 1981 Acta Phys. Sin. 30 1659 (in Chinese)
[3] Mei F X 1999 Applications of Lie Group and Lie Algebra to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[4] Zhao Y Y and Mei F X 1999 The Symmetry and Invariant and of Mechanical Systems (Beijing: Science Press) (in Chinese)
[5] Fu J L and Chen L Q 2003 Phys. Lett. A 317 255
[6] Fu J L and Chen L Q 2004 Mech. Res. Commun. 31 9
[7] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[8] Liu R W and Chen L Q 2004 Chin. Phys. 13 1615
[9] Zhang H B and Chen L Q 2005 J. Phys. Soc. Jap. 74 905
[10] Zhang Y and Mei F X 2000 Chin. Sci. Bull. 45 1354
[11] Luo S K 2002 Chin. Phys. Lett. 19 449
[12] Guo Y X, Wang Y, Chen G Y and Mei F X 2005 J. Math. Phys. 46 062902
[13] Guo Y X, Liu S X, Liu C, Luo S K and Wang Y 2007 J. Math. Phys. 48 082901
[14] Wang S Y and Mei F X 2002 Chin. Phys. 11 5
[15] Wu H B 2005 Chin. Phys. 14 452
[16] Xu X J, Qin M C and Mei F X 2004 Acta Mech. Sin. 20 668
[17] Fang J H, Liao Y P, Ding N and Wang P 2006 Chin. Phys. 15 2792
[18] Li Y C, Jing H X, Xia L L, Wang J and Hou Q B 2007 Chin. Phys. 16 2154
[19] Ge W K and Mei F X 2007 Acta Phys. Sin. 56 2479 (in Chinese)
[20] Lou Z M 2007 Acta Phys. Sin. 56 2475 (in Chinese)
[21] Ge W K and Mei F X 2009 Acta Phys. Sin. 58 699 (in Chinese)
[22] Liu C , Zhao Y H and Chen X W 2010 Acta Phys. Sin. 59 11 (in Chinese)
[23] Gu S L and Zhang H B 2010 Acta Phys. Sin. 59 716 (in Chinese)
[24] Levi D and Winternitz P 1991 Phys. Lett. A 152 335
[25] Levi D and Winternitz P 1993 J. Math. Phys. 34 3713
[26] Levi D and Winternitz P 1996 J. Math. Phys. 37 5551
[27] Levi D and Rodriguez M A 1999 J. Phys. A: Math. Gen. 32 8303
[28] Levi D, Tremblay S and Winternitz P 2000 J. Phys. A: Math. Gen. 33 8507
[29] Hydon P E 2000 Proc. R. Soc. A 456 2835
[30] Levi D and Winternitz P 2006 J. Phys. A: Math.Gen. 36 R1
[31] Dorodnitsyn V A 1991 J. Sov. Math. 55 1490
[32] Dorodnitsyn V A 1998 Int. J. Mod. Phys. 5 723
[33] Dorodnitsyn V A and Winternitz P 2000 Nonlinear Dynamics 22 49
[34] Dorodnitsyn V A, Kozlov R and Winternitz P 2000 J. Math. Phys. 41 480
[35] Dorodnitsyn V A and Kozlov R 2003 J. Nonl. Math. Phys. 10 16
[36] Dorodnitsyn V A, Kozlov R and Winternitz P 2004 J. Math. Phys. 45 336
[37] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 1063
[38] Fu J L, Dai G D, Jim'enez S and Tang Y F 2007 Chin. Phys. 16 570
[39] Dorodnitsyn V A 2001 Appl. Numer. Math. 307 321
[40] Fu J L, Chen L Q and Chen B Y 2009 Sin. China Ser. G 39 1320 endfootnotesize
[1] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[2] The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2020, 29(12): 124501.
[3] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[4] Conservation laws for Birkhoffian systems of Herglotz type
Yi Zhang(张毅), Xue Tian(田雪). Chin. Phys. B, 2018, 27(9): 090502.
[5] An application of a combined gradient system to stabilize a mechanical system
Xiang-Wei Chen(陈向炜), Ye Zhang(张晔), Feng-Xiang Mei(梅凤翔). Chin. Phys. B, 2016, 25(10): 100201.
[6] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
[7] Electron with arbitrary pseudo-spins in multilayer graphene
Worasak Prarokijjak, Bumned Soodchomshom. Chin. Phys. B, 2015, 24(4): 048101.
[8] Conservation laws of the generalized short pulse equation
Zhang Zhi-Yong (张智勇), Chen Yu-Fu (陈玉福). Chin. Phys. B, 2015, 24(2): 020201.
[9] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[10] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[11] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[12] Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schrödinger equation with variable coefficients
Jing Jian-Chun (荆建春), Li Biao (李彪). Chin. Phys. B, 2013, 22(1): 010303.
[13] A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints
Han Yue-Lin (韩月林), Sun Xian-Ting (孙现亭), Wang Xiao-Xiao (王肖肖), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(12): 120201.
[14] Hamilton formalism and Noether symmetry for mechanico–electrical systems with fractional derivatives
Zhang Shi-Hua (张世华), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2012, 21(10): 100202.
[15] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling (张美玲), Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(10): 100203.
No Suggested Reading articles found!