Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090307    DOI: 10.1088/1674-1056/19/9/090307
GENERAL Prev   Next  

Nonlinear two-mode squeezing obtained by analysing two-mode exponential quadrature operators in entangled state representation

Liu Tang-Kun(刘堂昆)a), Shan Chuan-Jia(单传家)a), Liu Ji-Bing(刘继兵)a), and Fan Hong-Yi(范洪义)b)
a College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China; b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  By analysing the properties of two-mode quadratures in an entangled state representation (ESR) we derive from ESR some complicated exponential quadrature operators for nonlinear two-mode squeezing, which directly leads to wave function of the nonlinear squeezed state in ESR.
Keywords:  nonlinear two-mode squeezing      two-mode exponential quadrature operators      entangled state representation  
Received:  07 December 2009      Revised:  03 March 2010      Accepted manuscript online: 
PACS:  0365  
  0290  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904033), and the Natural Science Foundation of Hubei Province, China (Grant No. 2009CDA145).

Cite this article: 

Liu Tang-Kun(刘堂昆), Shan Chuan-Jia(单传家), Liu Ji-Bing(刘继兵), and Fan Hong-Yi(范洪义) Nonlinear two-mode squeezing obtained by analysing two-mode exponential quadrature operators in entangled state representation 2010 Chin. Phys. B 19 090307

[1] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
[2] Orszag M 2000 Quantum Optics (Berlin: Springer-Verlag)
[3] Scully M O and Zubairy M S 1997 Quantum Optics (London: Cambridge University Press)
[4] Klauder J R and Sudarshan E C G 1968 Fundamentals of Quantum Optics (New York: Benjamin)
[5] Wu Y and Cte R 2002 Phys. Rev. A 66 025801
[6] Yang X X and Wu Y 2003 Commun. Theor. Phys. 40 585
[7] Yang X X and Wu Y 2002 Chin. Phys. Lett. 19 1625
[8] Buzek V 1990 J. Mod. Opt. 37 303
[9] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[10] Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1{R33
[11] Mandel L and Wolf E 1995 Optical Coherence and Quan-tum Optics (London: Cambridge University Press)
[12] Preskill J 1998 Quantum Information and Computation (Singapore: World Scienti c)
[13] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[14] Fan H Y and Ye X 1995 Phys. Rev. A 51 3343
[15] Fan H Y and Wunsche A 2000 J. Opt. B Quantum Semi-class. Opt. 2 464
[16] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[17] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[18] Wunsche A 1999 J. Opt. B Quantum Semiclass. Opt. 1 R11{21
[19] Hu L Y and Fan H Y 2009 Europhys. Lett. 85 60001
[20] Fan H Y and Fan Yue 2000 Mod. Phys. Lett. B 14 967
[21] Fan H Y and Fan Yue 1996 Phys. Rev. A 54 958
[22] Fan H Y and Yu G C 2001 Mod. Phys. Lett. A 16 2067
[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[4] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[5] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[6] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[7] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[8] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[9] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[12] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[13] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
[14] Quantum mechanical photoncount formula derived by entangled state representation
Hu Li-Yun(胡利云), Wang Zi-Sheng(王资生), L. C. Kwek, and Fan Hong-Yi(范洪义). Chin. Phys. B, 2011, 20(8): 084203.
[15] Time evolution of distribution functions in dissipative environments
Hu Li-Yun(胡利云), Chen Fei(陈菲), Wang Zi-Sheng(王资生), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2011, 20(7): 074204.
No Suggested Reading articles found!