|
|
Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method |
Zhang Huan-Ping(张焕萍)a), Li Biao(李彪)a)†, and Chen Yong(陈勇)b) |
a Nonlinear Science Center, Ningbo University, Ningbo 315211, China; b Institute of Theoretical Computing, East China Normal University, Shanghai 200062, China |
|
|
Abstract By symbolic computation and a direct method, this paper presents some exact analytical solutions of the one-dimensional generalized inhomogeneous higher-order nonlinear Schr?dinger equation with variable coefficients, which include bright solitons, dark solitons, combined solitary wave solutions, dromions, dispersion-managed solitons, etc. The abundant structure of these solutions are shown by some interesting figures with computer simulation.
|
Received: 09 October 2009
Accepted manuscript online:
|
PACS:
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant No.~10735030),
Natural Science Foundation of Zhejiang Province of China (Grant No.~Y6090592),
Natural Science Foundation of Ningbo City (Grant No. 2008A610017) and K.C.
Wong Ma |
Cite this article:
Zhang Huan-Ping(张焕萍), Li Biao(李彪), and Chen Yong(陈勇) Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method 2010 Chin. Phys. B 19 060302
|
[1] |
Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
|
[2] |
Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Rev. Lett. 45 1095
|
[3] |
Li B, Chen Y and Li Y Q 2008 Z. Naturforsch. 63a 763
|
[4] |
Yang R C, Hao R Y, Li L, Li Z H and Zhou G S 2004 Opt. Commun. 242 285
|
[5] |
Yang R C, Hao R Y, Li L, Li Z H and Zhou G S 2005 Phys. Rev. E 71 036616
|
[6] |
Tian B and Gao Y T 2005 Phys. Lett. A 342 228
|
[7] |
Li L, Li Z H, Xu Z Y, Zhou G S and Spatschek K H 2002 Phys. Rev. E 66 04661
|
[8] |
Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90 21
|
[9] |
Li Z H, Li L, Tian H P and Zhou G S 2000 Phys. Rev. Lett. 84 4096
|
[10] |
Li Z H, Li L, Tian H P, Zhou G S and Spatschek K H 2002 Phys. Rev. Lett. 89 263901
|
[11] |
Jia M, Wang J Y and Lou S Y 2009 Chin. Phys. Lett. 26 020201
|
[12] |
Li H M 2008 Chin. Phys. B 17 759
|
[13] |
He J C, Chen Z Y and Huang N N 2009 Acta Phys. Sin. 58 6063 (in Chinese)
|
[14] |
Li X Z, Zhang J L, Wang Y M and Wang M L 2004 Acta Phys. Sin. 53 4045 (in Chinese)
|
[15] |
Li H M, Li Y S and Lin J 2009 Chin. Phys. B 18 3657
|
[16] |
Lou S Y 1999 Chin. Phys. Lett. 16 659
|
[17] |
He J S, Ji M and Li Y S 2007 Chin. Phys. Lett. 24 2157
|
[18] |
Zhou R G 2007 Chin. Phys. Lett. 24 598
|
[19] |
Zdravkovic S and Sataric M V 2007 Chin. Phys. Lett. 24 1210
|
[20] |
Wang Y S, Li H Q and Song Y Z 2008 Chin. Phys. Lett. 25 1538
|
[21] |
Hong W P 2001 Opt. Commun. 194 217
|
[22] |
Li L, Li Z H, Xu Z Y, Zhou G S and Spatschek K H 2002 Phys. Rev. E 66 04661
|
[23] |
Li L, Li Z H, Li S Q and Zhou G S 2004 Opt. Commun. 234 169
|
[24] |
Li B 2005 Int. J. Mod. Phys. C 16 1225
|
[25] |
Li B and Chen Y 2006 Z. Naturforsch. 60a 768
|
[26] |
Li B, Zhang X F, Li Y Q, Chen Y and Liu W M 2008 Phys. Rev. A 78 023608
|
[27] |
Lou S Y, Huang G X and Ruan H Y 1991 J. Phys. A 24 L587
|
[28] |
Tan Y K, Wu H Y, Zhang L and Zhou X T 2008 Acta Phys. Sin. 57 3312 (in Chinese)
|
[29] |
Han J H, Shi L M, Wu G J, Zhang M and Zhang W L 2007 Acta Phys. Sin. 56 5054 (in Chinese)
|
[30] |
Li W A, Chen H and Zhang G C 2009 Chin. Phys. B 18 400
|
[31] |
Gao X Y, Hong X R, Wang C L and Duan W S 2008 Chin. Phys. B 17 3378
|
[32] |
Chen C L, Zhang J and Li Y S 2007 Chin. Phys. 16 2167
|
[33] |
Wu X F, Zhu J M and Ma Z Y 2007 Chin. Phys. 16 2159
|
[34] |
Ma H C, Deng A P and Qin Z Y 2009 Chin. Phys. Lett. 26 040201
|
[35] |
Li Z B and Liu Y P 2002 Comput. Phys. Commun. 148 256
|
[36] |
Fan E 2000 Phys. Lett. A 277 212
|
[37] |
Yan Z Y 2001 Phys. Lett. A 292 100
|
[38] |
Yan Z Y and Zhang H Q 2001 Phys. Lett. A 285 355
|
[39] |
Li B and Chen Y 2004 Chaos, Solitons and Fractals 21 241
|
[40] |
Li B 2004 Z. Naturforsch. 59a 919
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|