Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 044211    DOI: 10.1088/1674-1056/19/4/044211
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

A polarization stabilizer up to 12.6 krad/s with an additional function of stable state of polarization transformation

Zhang Xiao-Guang(张晓光)a)†, Fang Guang-Qing(方光青)a), Zhao Xin-Yuan(赵鑫媛)a), Zhang Wen-Bo(张文博)a), Xi Li-Xia(席丽霞)a), Xiong Qian-Jin(熊前进)b), Li Xi-Xiang(李喜祥)b), and Zhang Guang-Yong(张光勇)b)
a Key Laboratory of Information Photonics and Optical Communications,Ministry of Education, Beijing University of Posts and Telecommunications, P. O. Box 72, Beijing 100876, China; b Network Research Department, Huawei Technologies Co., Ltd., Shenzhen 518129, China
Abstract  This paper reports on an experiment about a novel method of polarization stabilization. The polarization stabilizer proposed here has an additional function of polarization transformation from any state of polarization into any others. The particle swarm optimization is introduced as a control algorithm in the process of either searching or endless tracking. The tracking speed of the stabilizer is obtained up to 12.6 krad/s by using hardware we have in the laboratory, which means that we can achieve a higher speed practical polarization stabilizer if we have faster hardware.
Keywords:  state of polarization      stabilization      optical fibre communications  
Received:  23 April 2009      Revised:  22 July 2009      Accepted manuscript online: 
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.81.Wg (Other fiber-optical devices)  
  42.81.Gs (Birefringence, polarization)  
  42.79.Ci (Filters, zone plates, and polarizers)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No.~2009AA01Z224), and Huawei Technology Project, China (Grant No.~YBON2008014).

Cite this article: 

Zhang Xiao-Guang(张晓光), Fang Guang-Qing(方光青), Zhao Xin-Yuan(赵鑫媛), Zhang Wen-Bo(张文博), Xi Li-Xia(席丽霞), Xiong Qian-Jin(熊前进), Li Xi-Xiang(李喜祥), and Zhang Guang-Yong(张光勇) A polarization stabilizer up to 12.6 krad/s with an additional function of stable state of polarization transformation 2010 Chin. Phys. B 19 044211

[1] Noutsios P C 2007 International Symposium on Signal, System and Electronics}, ISSSE'07, 323
[2] Xie C, Werner D and Haunstein H 2006 J. Lightwave Technol. 24 3968
[3] Zheng Y, Yu L, Yang B J and Zhang X G 2002 Acta Phys. Sin. 51 2745 (in Chinese)
[4] Fu S N, Wu C Q, Liu H T, Shum P and Dong H 2003 Chin. Phys. 12 1423
[5] Ulrich R 1979 Appl. Phys. Lett. 35 840
[6] Noè R 1986 Electron. Lett. 22 772
[7] Walker N G and Walker G R 1987 Electron. Lett. 23 290
[8] Heismann F 1994 J. Lightwave Technol. 12 690
[9] Chiba T, Ohtera Y and Kawakami S 1999 J. Lightwave Technol. 17 885
[10] Martinelli M, Martelli P and Pietralunga S M 2006 J. Lightwave Technol. 24 4172
[11] Hidayat A, Koch B, Mirvoda V, Zhang H, Bhandare S, Ibrahim S K, Sandel D and Noè R 2008 OFC/NFOEC 2008 paper JWA28
[12] Koch B, Hidayat A, Zhang H, Mivoda V, Lichtnger M, Sandel D and Noè R 2008 IEEE Photon. Technol. Lett. 20 961
[13] Zhang X G, Fang G Q, Zhao X Y, Zhang W B, Xi L X, Xiong Q J and Li X X 2009 OFC/NFOEC} 2009 paper JWA23
[14] Zhang X G and Zheng Y 2008 Chin. Phys. B 17 2509
[15] Zhang X G, Yu L, Zheng Y, Shen Y, Zhou G T, Xi L X and Yang B J 2004 OFC/NFOEC 2004 paper ThF1
[16] Zhang X G, Yu L, Zheng Y, Shen Y, Zhou G T, Chen L, Xi L X, Yuan T C, Zhang J Z and Yang B J 2004 Opt. Commun. 231 233
[17] Zhang X G, Zheng Y, Shen Y, Zhang J Z and Yang B J 2005 IEEE Photon. Technol. Lett. 17 85
[18] Kanda Y, Murai H, Kagawa M and Fujii K 2008 ECOC 2008 paper We.3.E6
[19] Kennedy J and Eberhart R C 1995 Proc. IEEE Int. Conf. on Neural Networks (Piscataway NJ, USA) p.1942
[20] Laskari E C, Parsopoulos K E and Vrahatis M N 2002 Proc. of the 2002 Congress on Evolutionary Computation 2 1576
[21] Eberhart R C and Kennedy J 1995 Proc. of the Sixth Int. Symp. on Micro Machine and Human Science} p.39
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[3] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[4] Dynamic stabilization of atomic ionization in a high-frequency laser field with different initial angular momenta
Di-Yu Zhang(张頔玉), Yue Qiao(乔月), Wen-Di Lan(蓝文迪), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), and Da-Jun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103202.
[5] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[6] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[7] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[8] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[9] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[10] Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region
Ying-Hao Gao(高英豪), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2019, 28(9): 094204.
[11] Non-crossover sub-Doppler DAVLL in selective reflection scheme
Lin-Jie Zhang(张临杰), Hao Zhang(张好), Yan-Ting Zhao(赵延霆), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2019, 28(8): 084211.
[12] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[13] Dynamic stabilization of Na atom in an intense pulsed laser field
Xiao-Li Guo(郭晓丽), Song-Feng Zhao(赵松峰), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(4): 043201.
[14] Modulation transfer spectroscopy based on acousto-optic modulator with zero frequency shift
Chen-Fei Wu(吴晨菲), Xue-Shu Yan(颜学术), Li-Xun Wei(卫立勋), Pei Ma(马沛), Jian-Hui Tu(涂建辉), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(11): 114203.
[15] Stabilizing effect of plasma discharge on bubbling fluidized granular bed
Hu Mao-Bin (胡茂彬), Dang Sai-Chao (党赛超), Ma Qiang (马强), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(7): 074502.
No Suggested Reading articles found!