Please wait a minute...
 Chin. Phys. B, 2010, Vol. 19(4): 040304    DOI: 10.1088/1674-1056/19/4/040304
 GENERAL Prev   Next

# Bilinear B?cklund transformation and explicit solutions for a nonlinear evolution equation

Wu Yong-Qi(吴勇旗)
Mathematics and Computational Science School, Zhanjiang Normal University, Zhanjiang 524048, China
Abstract  The bilinear form of two nonlinear evolution equations are derived by using Hirota derivative. The B?cklund transformation based on the Hirota bilinear method for these two equations are presented, respectively. As an application, the explicit solutions including soliton and stationary rational solutions for these two equations are obtained.
Keywords:  Hirota method      B?cklund transformation      soliton solution
Received:  26 August 2009      Revised:  15 September 2009      Accepted manuscript online:
 PACS: 05.45.Yv (Solitons) 02.30.Jr (Partial differential equations)
Fund: Project supported by the Science Research Foundation of Zhanjiang Normal University (Grant No.~L0803).

#### Cite this article:

Wu Yong-Qi(吴勇旗) Bilinear B?cklund transformation and explicit solutions for a nonlinear evolution equation 2010 Chin. Phys. B 19 040304

 [1] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA: SIAM) [2] Novikov S, Manakov S V, Pitaevskii L P and Zakharov V E 1984 Theory of Solitons, The Inverse Scattering Methods (New York: Consultants Bureau) [3] Newell A C 1985 Solitons in Mathematics and Physics (Philadelphia, PA: SIAM) [4] Belokolos E D, Bobenko A I, Enolskii V Z, Its A R and Matveev V B 1994 Algebro-Geometric Approach to Nonlinear Integrable Equations (Berlin: Springer) [5] Cherednik I 1996 Basic Methods of Soliton Theory (Singapore: World Scientific) [6] Matsuno Y 1984 Bilinear Transformation Method (London: Academic Press, Inc.) [7] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press) [8] Konopelchenko B, Sidorenko J and Strampp W 1991 Phys. Lett. A 157 17 [9] Chen Y and Li Y S 1991 Phys. Lett. A 157 22 [10] Cao C W, Wu Y T and Geng X G 1999 J. Math. Phys. 40 3948 [11] Cao C W, Geng X G and Wu Y T 1999 J. Phys. A 32 8059 [12] Geng X G, Wu Y T and Cao C W 1999 J. Phys. A 32 3733 [13] Zhou R G 1997 J. Math. Phys. 38 2535 [14] Wang M L 1995 Phys. Lett. A 199 169 [15] Lei Y 1999 Phys. Lett. A 260 55 [16] Fan E G and Zhang H Q 1998 Acta Phys. Sin. 47 353 (in Chinese) [17] Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese) [18] Parkes E J and Duffy B R 1997 Phys. Lett. A 229 217 [19] Zhang G X, Li Z B and Duan Y S 2000 Sci. Chin. A 30 1103 (in Chinese) [20] Fan E G 2000 Phys. Lett. A 277 212 [21] Shi Y R, Lü K P, Duan W S and Zhao J B 2001 Acta Phys. Sin. 50 2074 (in Chinese) [22] Guo G P and Zhang J F 2002 Acta Phys. Sin. 51 1159 (in Chinese) [23] Liu S K, Fu Z T, Liu S D and Zhao Q 2001 Phys. Lett. A 289 69 [24] Fu Z T, Liu S K, Liu S D and Zhao Q 2001 Phys. Lett. A 290 72 [25] Bogoyavlenskii O I 1990 Russ. Math. Surveys 45 1 [26] Radha R and Lakshmanan M 1995 Phys. Lett. A 197 7 [27] Ikeda T and Takasaki K 2001 Int. Math. Res. Notices 7 329 [28] Lou S Y and Ruan H Y 2001 J. Phys. A 34 305 [29] Zhang J F and Meng J P 2004 Phys. Lett. A 321 173 [30] Xie Z and Zhang H Q 2005 Commun. Theor. Phys. 43 401 [31] Wang D S and Li H B 2007 Appl. Math. Comput. 188 762 [32] Huang W H, Liu Y L and Zhang J F 2008 Commun. Theor. Phys. 49 268 [33] Chen L X and Zhang J X 2008 Appl. Math. Comput. 198 184 [34] Fan E G and Hon Y C 2008 Phys. Rev. E 78 036607 [35] Swnatorski A and Infeld E 1996 Phys. Rev. Lett. 77 2855 [36] Chen Y, Yan Z Y and Zhang H Q 2003 Phys. Lett. A 307 107 [37] El-Sayed S M and Kaya D 2004 Appl. Math. Comput. 157 523 [38] Hu J Q 2005 Chaos, Solitons and Fractals 23 391 [39] Liu N and Liu X Q 2008 Chin. Phys. Lett. 25 3527
 [1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203. [2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506. [3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505. [4] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201. [5] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202. [6] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201. [7] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206. [8] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502. [9] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211. [10] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201. [11] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202. [12] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204. [13] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202. [14] Nonautonomous dark soliton solutions in two-component Bose-Einstein condensates with a linear time-dependent potential Li Qiu-Yan (李秋艳), Wang Shuang-Jin (王双进), Li Zai-Dong (李再东). Chin. Phys. B, 2014, 23(6): 060310. [15] Periodic solitons in dispersion decreasingfibers with a cosine profile Jia Ren-Xu (贾仁需), Yan Hong-Li (闫宏丽), Liu Wen-Jun (刘文军), Lei Ming (雷鸣). Chin. Phys. B, 2014, 23(10): 100502.
 No Suggested Reading articles found!