Abstract The eigenvalue space of the canonical four-dimensional Chua's circuit which can realize every eigenvalue for four-dimensional system is studied in this paper. First, the analytical relations between the circuit parameters and the eigenvalues of the system are established, and therefore all the circuit parameters can be determined explicitly by any given set of eigenvalues. Then, the eigenvalue space of the circuit is investigated in two cases by the nonlinear elements used. According to the types of the eigenvalues, some novel hyperchaotic attractors are presented. Further, the dynamic behaviours of the circuit are studied by the bifurcation diagrams and the Lyapunov spectra of the eigenvalues.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.