Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124215    DOI: 10.1088/1674-1056/19/12/124215
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Monolithic integration of electroabsorption modulators and tunnel injection distributed feedback lasers using quantum well intermixing

Wang Yang(汪洋), Pan Jiao-Qing(潘教青), Zhao Ling-Juan(赵玲娟), Zhu Hong-Liang(朱洪亮), and Wang Wei(王圩)
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China
Abstract  Electroabsorption modulators combining Franz–Keldysh effect and quantum confined Stark effect have been monolithically integrated with tunnel-injection quantum-well distributed feedback lasers using a quantum well intermixing method. Superior characteristics such as extinction ratio and temperature insensitivity have been demonstrated at wide temperature ranges.
Keywords:  electroabsorption modulator      tunnel injection      wide temperature range operation      quantum well intermixing  
Received:  02 June 2010      Revised:  22 June 2010      Accepted manuscript online: 
PACS:  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.79.Hp (Optical processors, correlators, and modulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60736036, 60706009, 60777021 and 60702006), the National Basic Research Program of China (Grant Nos. 2006CB604901 and 2006CB604902), and the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z419, 2007AA03Z417 and 2009AA03Z442).

Cite this article: 

Wang Yang(汪洋), Pan Jiao-Qing(潘教青), Zhao Ling-Juan(赵玲娟), Zhu Hong-Liang(朱洪亮), and Wang Wei(王圩) Monolithic integration of electroabsorption modulators and tunnel injection distributed feedback lasers using quantum well intermixing 2010 Chin. Phys. B 19 124215

[1] Ishizaka M, Yamaguchi M, Shimizu J and Komatsu K 1997 IEEE Photon. Technol. Lett. 9 1628
[2] Suzuki M, Noda Y, Tanaka H, Akiba S, Kushiro Y and Isshiki H 1987 J. Lightwave Technol. 5 1277
[3] Sahlen O 1994 J. Lightwave Technol. 12 969
[4] Takeuchi H, Tsuzuki K, Sato K, Yamamoto M, Itaya Y, Sano A, Yoneyama M and Otsuji T 1997 IEEE Journal of Selected Topics in Quantum Electronics 3 336
[5] Miyazaki Y, Tada H, Aoyagi T, Nishimura T and Mitsui Y 2002 IEEE J. Quantum Electron. 38 1075
[6] Aoki M, Takahashi M, Suzuki M, Sano H, Uomi K, Kawano T and Takai A 1992 IEEE Photon. Technol. Lett. 4 580
[7] Stegmueller B, Baur E and Kicherer M 2002 IEEE Photon. Technol. Lett. 14 1647
[8] Kobayashi W, Tsuzuki K, Shibata Y, Yamanaka T, Kondo Y and Kano F 2009 J. Lightwave Technol. 27 5084
[9] Delprat D, Ramdane A, Ougazzaden A, Nakajima H and Carre M 1997 Electron. Lett. 33 53
[10] Zhao Q, Pan J Q, Zhang J, Li B X, Zhou F, Wang B J, Wang L F, Bian J, Zhao L J and Wang W 2006 Acta Phys. Sin. 55 1259 (in Chinese)
[11] Saravanan B K, Wenger T, Hanke C, Gerlach P, Peschke M and Macaluso R 2006 IEEE Photon. Technol. Lett. 18 862
[12] Aubin G, Seoane J, Merghem K, Berger M S, Jespersen C F, Garreau A, Blache F, Jany C, Provost J G, Kazmierski C and Jeppesen P 2009 Electron. Lett. 45 1263-U100
[13] Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Ishikawa M, Tsuzuki K, Shibata Y, Kondo Y and Kano F 2009 IEEE Photon. Technol. Lett. 21 1054
[14] Kobayashi W, Yamanaka T, Arai M, Fujiwara N, Fujisawa T, Tsuzuki K, Ito T, Tadokoro T and Kano F 2009 IEEE Photon. Technol. Lett. 21 1317
[15] Makino S, Shinoda K, Kitatani T, Hayashi H, Shiota T, Tanaka S, Aoki M, Sasada N and Naoe K 2009 IEICE Transac. Electron. E92c 937
[16] Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Tadokoro T, Tsuzuki K, Kondo Y and Kano F 2010 J. Lightwave Technol. 28 164
[17] Sun H C, Davis L, Lam Y, Sethi S, Singh J and Bhattacharya P K 1994 Gallium Arsenide and Related Compounds 1993 136 197
[18] Bhattacharya P, Zhang X K, Yuan Y S, Kamath K, Klotzkin D, Caneau C and Bhat R 1998 Physics and Simulation of Optoelectronic Devices Vi, Parts 1 and 2 3283 702
[19] Bhattacharya P, Yuan Y, Brock T, Caneau C and Bhat R 1998 IEEE Photon. Technol. Lett. 10 778
[20] Yoon H, Gutierrezaitken A L, Jambunathan R, Singh J and Bhattacharya P K 1995 IEEE Photon. Technol. Lett. 7 974
[21] Marsh J H 1993 Semicond. Sci. Technol. 8 1136
[22] Ramdane A, Krauz P, Rao E V K, Hamoudi A, Ougazzaden A, Robein D, Gloukhian A and Carre M 1995 IEEE Photon. Technol. Lett. 7 1016
[23] Raring J W, Johansson L A, Skogen E J, Sysak M N, Poulsen H N, DenBaars S P and Coldren L A 2007 J. Lightwave Technol. 25 239
[1] Simplified modeling of frequency behavior in photonic crystal vertical cavity surface emitting laser with tunnel injection quantum dot in active region
Mehdi Riahinasab, Vahid Ahmadi, Elham Darabi. Chin. Phys. B, 2017, 26(2): 024211.
[2] Dual-wavelength distributed Bragg reflector semiconductor laser based on composite resonant cavity
Chen Cheng (陈琤), Zhao Ling-Juan (赵玲娟), Qiu Ji-Fang (邱吉芳), Liu Yang (刘扬), Wang Wei (王圩), Lou Cai-Yun (娄采云). Chin. Phys. B, 2012, 21(9): 094208.
[3] Monolithic optical gates based on integration of evanescently-coupled uni-traveling-carrier photodiodes and electroabsorption modulators
Zhang Yun-Xiao(张云霄), Liao Zai-Yi(廖栽宜), Zhao Ling-Juan(赵玲娟), Pan Jiao-Qing(潘教青), Zhu Hong-Liang(朱洪亮), and Wang Wei(王圩). Chin. Phys. B, 2010, 19(7): 074216.
No Suggested Reading articles found!