CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Monolithic integration of electroabsorption modulators and tunnel injection distributed feedback lasers using quantum well intermixing |
Wang Yang(汪洋)†, Pan Jiao-Qing(潘教青), Zhao Ling-Juan(赵玲娟), Zhu Hong-Liang(朱洪亮), and Wang Wei(王圩) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China |
|
|
Abstract Electroabsorption modulators combining Franz–Keldysh effect and quantum confined Stark effect have been monolithically integrated with tunnel-injection quantum-well distributed feedback lasers using a quantum well intermixing method. Superior characteristics such as extinction ratio and temperature insensitivity have been demonstrated at wide temperature ranges.
|
Received: 02 June 2010
Revised: 22 June 2010
Accepted manuscript online:
|
PACS:
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60736036, 60706009, 60777021 and 60702006), the National Basic Research Program of China (Grant Nos. 2006CB604901 and 2006CB604902), and the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z419, 2007AA03Z417 and 2009AA03Z442). |
Cite this article:
Wang Yang(汪洋), Pan Jiao-Qing(潘教青), Zhao Ling-Juan(赵玲娟), Zhu Hong-Liang(朱洪亮), and Wang Wei(王圩) Monolithic integration of electroabsorption modulators and tunnel injection distributed feedback lasers using quantum well intermixing 2010 Chin. Phys. B 19 124215
|
[1] |
Ishizaka M, Yamaguchi M, Shimizu J and Komatsu K 1997 IEEE Photon. Technol. Lett. 9 1628
|
[2] |
Suzuki M, Noda Y, Tanaka H, Akiba S, Kushiro Y and Isshiki H 1987 J. Lightwave Technol. 5 1277
|
[3] |
Sahlen O 1994 J. Lightwave Technol. 12 969
|
[4] |
Takeuchi H, Tsuzuki K, Sato K, Yamamoto M, Itaya Y, Sano A, Yoneyama M and Otsuji T 1997 IEEE Journal of Selected Topics in Quantum Electronics 3 336
|
[5] |
Miyazaki Y, Tada H, Aoyagi T, Nishimura T and Mitsui Y 2002 IEEE J. Quantum Electron. 38 1075
|
[6] |
Aoki M, Takahashi M, Suzuki M, Sano H, Uomi K, Kawano T and Takai A 1992 IEEE Photon. Technol. Lett. 4 580
|
[7] |
Stegmueller B, Baur E and Kicherer M 2002 IEEE Photon. Technol. Lett. 14 1647
|
[8] |
Kobayashi W, Tsuzuki K, Shibata Y, Yamanaka T, Kondo Y and Kano F 2009 J. Lightwave Technol. 27 5084
|
[9] |
Delprat D, Ramdane A, Ougazzaden A, Nakajima H and Carre M 1997 Electron. Lett. 33 53
|
[10] |
Zhao Q, Pan J Q, Zhang J, Li B X, Zhou F, Wang B J, Wang L F, Bian J, Zhao L J and Wang W 2006 Acta Phys. Sin. 55 1259 (in Chinese)
|
[11] |
Saravanan B K, Wenger T, Hanke C, Gerlach P, Peschke M and Macaluso R 2006 IEEE Photon. Technol. Lett. 18 862
|
[12] |
Aubin G, Seoane J, Merghem K, Berger M S, Jespersen C F, Garreau A, Blache F, Jany C, Provost J G, Kazmierski C and Jeppesen P 2009 Electron. Lett. 45 1263-U100
|
[13] |
Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Ishikawa M, Tsuzuki K, Shibata Y, Kondo Y and Kano F 2009 IEEE Photon. Technol. Lett. 21 1054
|
[14] |
Kobayashi W, Yamanaka T, Arai M, Fujiwara N, Fujisawa T, Tsuzuki K, Ito T, Tadokoro T and Kano F 2009 IEEE Photon. Technol. Lett. 21 1317
|
[15] |
Makino S, Shinoda K, Kitatani T, Hayashi H, Shiota T, Tanaka S, Aoki M, Sasada N and Naoe K 2009 IEICE Transac. Electron. E92c 937
|
[16] |
Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Tadokoro T, Tsuzuki K, Kondo Y and Kano F 2010 J. Lightwave Technol. 28 164
|
[17] |
Sun H C, Davis L, Lam Y, Sethi S, Singh J and Bhattacharya P K 1994 Gallium Arsenide and Related Compounds 1993 136 197
|
[18] |
Bhattacharya P, Zhang X K, Yuan Y S, Kamath K, Klotzkin D, Caneau C and Bhat R 1998 Physics and Simulation of Optoelectronic Devices Vi, Parts 1 and 2 3283 702
|
[19] |
Bhattacharya P, Yuan Y, Brock T, Caneau C and Bhat R 1998 IEEE Photon. Technol. Lett. 10 778
|
[20] |
Yoon H, Gutierrezaitken A L, Jambunathan R, Singh J and Bhattacharya P K 1995 IEEE Photon. Technol. Lett. 7 974
|
[21] |
Marsh J H 1993 Semicond. Sci. Technol. 8 1136
|
[22] |
Ramdane A, Krauz P, Rao E V K, Hamoudi A, Ougazzaden A, Robein D, Gloukhian A and Carre M 1995 IEEE Photon. Technol. Lett. 7 1016
|
[23] |
Raring J W, Johansson L A, Skogen E J, Sysak M N, Poulsen H N, DenBaars S P and Coldren L A 2007 J. Lightwave Technol. 25 239
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|