ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Monolithic optical gates based on integration of evanescently-coupled uni-traveling-carrier photodiodes and electroabsorption modulators |
Zhang Yun-Xiao(张云霄)†, Liao Zai-Yi(廖栽宜), Zhao Ling-Juan(赵玲娟), Pan Jiao-Qing(潘教青), Zhu Hong-Liang(朱洪亮), and Wang Wei(王圩) |
Key Laboratory of Semiconductors Materials, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We report on chip-scale optical gates based on the integration of evanescent waveguide unitraveling-carrier photodiodes (EC-UTC-PDs) and intra-step quantum well electroabsorption modulators (IQW-EAMs) on n-InP substrates. These devices exhibit simultaneously 2.1 GHz and -16.2 dB RF-gain at 21 GHz with a 450 Ω thin-film resistor and a bypass capacitor integrated on a chip.
|
Accepted manuscript online:
|
PACS:
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
42.79.Ta
|
(Optical computers, logic elements, interconnects, switches; neural networks)
|
|
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
84.32.Ff
|
(Conductors, resistors (including thermistors, varistors, and photoresistors))
|
|
84.32.Tt
|
(Capacitors)
|
|
Fund: Project supported by the National High Technology Research and Development of China (Grant Nos. 2006AA01Z256, 2007AA03Z419 and 2007AA03Z417), the State Key Development Program for Basic Research of China (Grant Nos. 2006CB604901and 2006CB604902), and the National Natural Science Foundation of China (Grant Nos. 90401025, 60736036, 60706009 and 60777021). |
Cite this article:
Zhang Yun-Xiao(张云霄), Liao Zai-Yi(廖栽宜), Zhao Ling-Juan(赵玲娟), Pan Jiao-Qing(潘教青), Zhu Hong-Liang(朱洪亮), and Wang Wei(王圩) Monolithic optical gates based on integration of evanescently-coupled uni-traveling-carrier photodiodes and electroabsorption modulators 2010 Chin. Phys. B 19 074216
|
[1] |
Yoo S J B 1996 IEEE J. Light. Tech. 14 995
|
[2] |
Sabnis V A, Demir H V, Fidaner O, Harris J S, Miller D A B, Zheng J F, Li N, Wu T C, Chen H T and Houng Y M 2004 Appl. Phys. Lett. 84 469
|
[3] |
Xu X J, Chen S W, Xu H H, Sun Y, Yu Y D, Yu J X and Wang Q M 2009 Chin. Phys. B 18 3900
|
[4] |
Wang J, Sun J and Zhang X 2008 Electronic Letters 44 413
|
[5] |
Kodama S, Yoshimatsu T and Ito H 2004 Electron. Lett. 40 555
|
[6] |
Yoshimatsu T, Kodama S, Yoshino K and Ito H 2004 Electron. Lett. 40 626
|
[7] |
Kodama S, Shimizu T, Yoshimatsu T, Yoshino K, Furuta T and Ito H 2004 Electron. Lett. 40 696
|
[8] |
Yoshimatsu T, Kodama S, Yoshino K and Ito H 2005 IEEE Photon. Technol. Lett. 17 2367
|
[9] |
Zhang Y X, Liao Z Y, Pan J Q, Zhou F, Zhu H L, Zhao L J and Wang W 2009 Chin. Phys. Lett. 26 034215-1
|
[10] |
Yoshino K, Yoshimatsu T, Kodama S and Ito H 2006 IEEE Trans. Adv. Packag. 29 766
|
[11] |
Achouche M, Magnin V, Harari J, Lelarge F, Derouin E, Jany C, Carpentier D, Blache F and Descoster D 2004 IEEE Photon. Technol. Lett. 16 584
|
[12] |
Zhang Y X, Pan J Q, Zhao L J, Zhu H L and Wang W 2010 Chin. Phys. Lett. 27 028501
|
[13] |
Shin D S and Yu P K L 2001 J. Appl. Phys. 89 1515
|
[14] |
Chen J X, Wu Y, Chen W X, Shubin I, Clawson A, Chang W S C and Yu P K L 2004 IEEE Photon. Technol. Lett. 16 440
|
[15] |
Zhang Y X, Liao Z Y and Wang W 2009 Chin. Phys. B 18 2393
|
[16] |
Demir H V, Sabnis V A, Fidaner O, Zheng J, Harris J S and Miller D A B 2005 IEEE J. Sel. Topics Quantum Electron. 11 86 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|