Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 114302    DOI: 10.1088/1674-1056/19/11/114302
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Time-domain analysis of second-harmonic generation of primary Lamb wave propagation in an elastic plate

Deng Ming-Xi(邓明晰)a) † and Xiang Yan-Xun(项延训)b)
a Department of Physics, Logistics Engineering University, Chongqing 401331, China; b School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
Abstract  Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work is performed based on the preconditions that the phase velocity matching is satisfied and that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero. It investigates the influences of the difference between the group velocities of the primary Lamb wave and the double frequency Lamb wave, the propagation distance and the duration of the primary Lamb wave waveform on the envelope shape of the time-domain second harmonic. It finds that the maximum magnitude of the envelope of the second-harmonic waveform can grow within some propagation distance even if the condition of group velocity matching is not satisfied. Our analyses also indicate that the maximum magnitude of the envelope of the second-harmonic waveform is kept constant beyond a specific propagation distance. Furthermore, it concludes that the integration amplitude of the time-domain second-harmonic waveform always grows with propagation distance within the second-order perturbation. The present research yields new physical insight not previously available into the effect of generation of the time-domain second harmonic by propagation of a primary Lamb wave waveform.
Keywords:  Lamb wave      second-harmonic generation      group velocity matching      phase velocity matching  
Received:  31 March 2010      Revised:  25 April 2010      Accepted manuscript online: 
PACS:  43.25.Cb (Macrosonic propagation, finite amplitude sound; shock waves)  
  43.25.Ed (Effect of nonlinearity on velocity and attenuation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10974256).

Cite this article: 

Deng Ming-Xi(邓明晰) and Xiang Yan-Xun(项延训) Time-domain analysis of second-harmonic generation of primary Lamb wave propagation in an elastic plate 2010 Chin. Phys. B 19 114302

[1] Ginsberg J H and Shu K T 1991 wxRev. Prog. Quant. Nondestr. Eval. 10 B 1829
[2] Nagy P B 1998 wxUltrasonics 36 375
[3] Zheng Y P, Maev R G and Solodov I Y 1999 wxCanadian J. Phys. 77 927
[4] Herrmann J, Kim J Y, Jacobs L J, Qu J M, Littles J W and Savage M F 2006 wxJ. Appl. Phys. 99 124913
[5] Rose J L 2002 wxJ. Pressure Vessel Technol. 124 273
[6] Deng M X 2006 wxUltrasonics 44 e1157
[7] Deng M X and Pei J F 2007 wx Appl. Phys. Lett. 90 121902
[8] Bermes C, Kim J Y, Qu J M and Jacobs L J 2007 wxAppl. Phys. Lett. 90 021901
[9] Pruell C, Kim J Y, Qu J M and Jacobs L J 2007 wxAppl. Phys. Lett. 91 231911
[10] Pruell C, Kim J Y, Jacobs L J and Qu J M 2009 wxSmart Mater. Struct. 18 035003
[11] Lee T H and Choi I H 2008 wxMod. Phys. Lett. B 22 1135
[12] Deng M X 1999 wxJ. Appl. Phys. 85 3051
[13] Lima W J N 2000 wxHarmonic Generation in Isotropic Elastic Waveguides (Ph.D. Thesis) (The University of Texas at Austin)
[14] Deng M X 2002 wxGeneration and Propagation of the Second Harmonics of Lamb Waves in Planar Solid Structures (Ph.D. Thesis) (Shanghai: Tongji University) (in Chinese)
[15] Deng M X 2003 wxJ. Appl. Phys. 94 4152
[16] Lima W J and Hamilton M F 2003 wxJ. Sound Vib. 265 819
[17] Deng M X, Wang P and Lv X F 2005 wxJ. Phys. D-Appl. Phys. 38 344
[18] Xiang Y X and Deng M X 2008 wxChin. Phys. B 17 4232
[19] Hamilton M F and Blackstock D T 1998 wxNonlinear Acoustics (New York: Academic) p263 endfootnotesize
[1] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[2] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[3] Assessment of cortical bone fatigue using coded nonlinear ultrasound
Duwei Liu(刘度为), Boyi Li(李博艺), Dongsheng Bi(毕东生), Tho N. H. T. Tran, Yifang Li(李义方), Dan Liu(刘丹), Ying Li(李颖), and Dean Ta(他得安). Chin. Phys. B, 2021, 30(9): 094301.
[4] Characterization of inner layer thickness change of a composite circular tube using nonlinear circumferential guided wave:A feasibility study
Ming-Liang Li(李明亮), Guang-Jian Gao(高广健), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2021, 30(8): 084301.
[5] Location of micro-cracks in plates using time reversed nonlinear Lamb waves
Yaoxin Liu(刘尧鑫), Aijun He(何爱军), Jiehui Liu(刘杰惠), Yiwei Mao(毛一葳), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(5): 054301.
[6] Enhancement effect of cumulative second-harmonic generation by closed propagation feature of circumferential guided waves
Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训). Chin. Phys. B, 2020, 29(2): 024301.
[7] Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation
Wei-Guang Zhu(祝伟光), Yi-Feng Li(李义丰), Li-Qiang Guan(关立强), Xi-Li Wan(万夕里), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(1): 014302.
[8] Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates
Hui Zhang(张辉), Hai-Yan Zhang(张海燕), Meng-Yun Xu(徐梦云), Guo-Peng Fan(范国鹏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2019, 28(7): 074301.
[9] Response features of nonlinear circumferential guided wave on early damage in inner layer of a composite circular tube
Ming-Liang Li(李明亮), Liang-Bing Liu(刘良兵), Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军). Chin. Phys. B, 2019, 28(4): 044301.
[10] Lamb wave signal selective enhancement by an improved design of meander-coil electromagnetic acoustic transducer
Wen-Xiu Sun(孙文秀), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Zheng-Wu Xia(夏正武). Chin. Phys. B, 2018, 27(8): 084301.
[11] Generation of narrowband Lamb waves based on the Michelson interference technique
Tian-Ming Ye(叶天明), Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2018, 27(5): 054301.
[12] Wideband dispersion removal and mode separation of Lamb waves based on two-component laser interferometer measurement
Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2017, 26(9): 094301.
[13] Review on second-harmonic generation of ultrasonic guided waves in solid media (I):Theoretical analyses
Wei-Bin Li(李卫彬), Ming-Xi Deng(邓明晰), Yan-Xun Xiang(项延训). Chin. Phys. B, 2017, 26(11): 114302.
[14] Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers
Ming-Liang Li(李明亮), Ming-Xi Deng(邓明晰), Guang-Jian Gao(高广健). Chin. Phys. B, 2016, 25(12): 124301.
[15] Quantitative damage imaging using Lamb wave diffraction tomography
Hai-Yan Zhang(张海燕), Min Ruan(阮敏), Wen-Fa Zhu(朱文发), Xiao-Dong Chai(柴晓冬). Chin. Phys. B, 2016, 25(12): 124304.
No Suggested Reading articles found!