Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 114207    DOI: 10.1088/1674-1056/19/11/114207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Nonlinear images of scatterers in chirped pulsed laser beams

Hu Yong-Hua(胡勇华), Wang You-Wen(王友文), Wen Shuang-Chun(文双春), and Fan Dian-Yuan(范滇元)
School of Computer and Communication, Hunan University, Changsha 410082, China
Abstract  The bandwidth and the duration of incident pulsed beam are proved to play important roles in modifying the nonlinear image of amplitude-type scatterer. It is found that the initially positive chirp-type bandwidth can suppress the nonlinear image, while the negative one can enhance it, and that both effects are inversely proportional to the incident pulse duration. Numerical simulations further demonstrate that the location of nonlinear image is at the conjugate plane of the scatterer and that, for negatively pre-chirped pulsed beam, the nonlinear image peak intensity can be higher than that in the corresponding monochromatic case under certain conditions. Moreover the effect of group velocity dispersion on nonlinear image is found to be similar to that of chirp-type bandwidth.
Keywords:  pulsed laser beam      nonlinear propagation      nonlinear image      self-focusing  
Received:  24 November 2009      Revised:  24 May 2010      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60890202 and 10974049).

Cite this article: 

Hu Yong-Hua(胡勇华), Wang You-Wen(王友文), Wen Shuang-Chun(文双春), and Fan Dian-Yuan(范滇元) Nonlinear images of scatterers in chirped pulsed laser beams 2010 Chin. Phys. B 19 114207

[1] Kelley P L 1965 Phys. Rev. Lett. 15 1005
[2] Sun G Z, Ott E, Lee Y C and Guzdar P 1987 Phys. Fluids bf 30 526
[3] Cao X D, Agrawal G P and McKinstrie J 1994 Phys. Rev. A 49 4085
[4] Berkovsky A N, Kozlov S A and Shpolyanskiy Y A 2005 Phys. Rev. A 72 043821
[5] Bespalov V I and Talanov V I 1966 JETP Lett. 3 307
[6] Shen Y R 1975 Prog. Quant. Electron. 4 1
[7] Campillo A J, Shapiro S L and Suydam B R 1973 Appl. Phys. Lett. 23 628
[8] Wen S C, Qian L J and Fan D Y 2003 Acta. Phys. Sin. 52 1640 (in Chinese)
[9] Hunt J T, Manes K R and Renard P A 1993 Appl. Opt. 32 5973
[10] Widmayer C C, Milam D and de Szoeke S P 1997 Appl. Opt. bf 36 9342
[11] Widmayer C C, Nickels M R and Milam D 1998 Appl. Opt. 37 4801
[12] Xie L P, Jing F, Zhao J L, Su J Q, Wang W Y and Peng H S 2004 Opt. Commun. 236 343
[13] Xie L P, Zhao J L and Jing F 2005 Appl. Opt. 44 2553
[14] Peng T, Zhao J L, Xie L P, Yie Z J, Li Q and Su J Q 2007 Acta. Phys. Sin. 56 3255 (in Chinese)
[15] Peng T, Zhao J L, Li D, Ye Z J and Xie L P 2009 Chin. Phys. B 18 1884
[16] Wang Y W, Deng J Q, Wen S C, Tang Z X, Fu X Q and Fan D Y 2009 Acta. Phys. Sin. 58 1738 (in Chinese)
[17] Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S and Soures J M 1989 J. Appl. Phys. 66 3456
[18] McKenty P W, Skupsky S, Kelly J H and Cotton C T 1994 J. Appl. Phys. 76 2027
[19] Rothenberg J B 1997 SPIE 2633 634
[20] Brabec T and Krausz F 1977 Phys. Rev. Lett. 78 3282
[21] Agrawal G P 2001 Nonlinear Fiber Optics (New York: Academic) p70
[1] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[2] Nonlinear propagation of an intense Laguerre-Gaussian laser pulse in a plasma channel
Mingping Liu(刘明萍), Zhen Zhang(张震), and Suhui Deng(邓素辉). Chin. Phys. B, 2021, 30(5): 055204.
[3] Linear and nonlinear propagation characteristics of multi-Gaussian laser beams
Naveen Gupta and Sandeep Kumar. Chin. Phys. B, 2020, 29(11): 114210.
[4] A quasi-discrete Hankel transform for nonlinear beam propagation
You Kai-Ming(游开明), Wen Shuang-Chun(文双春), Chen Lie-Zun(陈列尊), Wang You-Wen(王友文), and Hu Yong-Hua(胡勇华). Chin. Phys. B, 2009, 18(9): 3893-3899.
[5] Simulation analysis of evolution of hot-images induced by coplanar multi-scatterers
Peng Tao(彭涛), Zhao Jian-Lin(赵建林), Li Dong(李东), Ye Zhi-Jun(叶知隽), and Xie Liang-Ping(谢良平). Chin. Phys. B, 2009, 18(5): 1884-1890.
[6] Self-compression of femtosecond pulses in argon with a power close to the self-focusing threshold
Chen Xiao-Wei(陈晓伟), Zeng Zhi-Nan(曾志男), Dai Jun(戴君), Li Xiao-Fang(李小芳), Li Ru-Xin(李儒新), and Xu Zhi-Zhan(徐至展) . Chin. Phys. B, 2008, 17(5): 1826-1832.
[7] Intense laser beam guiding in self-induced electron cavitation channel in underdense plasmas
Cang Yu(苍宇), Yu Wei(余玮), Wu Hui-Chun(武慧春), Xu Han(徐涵), and Tian You-Wei(田友伟). Chin. Phys. B, 2007, 16(2): 456-462.
[8] (3+1)-dimensional nonlinear propagation equation for ultrashort pulsed beam in left-handed material
Hu Yong-Hua(胡勇华), Fu Xi-Quan(傅喜泉), Wen Shuang-Chun(文双春), Su Wen-Hua(苏文华), and Fan Dian-Yuan(范滇元). Chin. Phys. B, 2006, 15(12): 2970-2976.
[9] The propagation dynamics of ultraviolet light filament with Rayleigh scattering in air
Zhang Hua (张华). Chin. Phys. B, 2005, 14(10): 2019-2025.
[10] Optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate
Duan Zuo-Liang (段作梁), Chen Jian-Ping (陈建平), Li Ru-Xin (李儒新), Lin Li-Huang (林礼煌), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2004, 13(3): 359-363.
[11] FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA
Wen Shuang-chun (文双春), Fan Dian-yuan (范滇元). Chin. Phys. B, 2001, 10(11): 1032-1036.
No Suggested Reading articles found!