Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 114206    DOI: 10.1088/1674-1056/19/11/114206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Solving nonlinear master equation describing quantum damping by virtue of the entangled state representation

Fan Hong-Yi(范洪义)a), Ren Gang(任刚)a), Hu Li-Yun(胡利云)b), and Jiang Nian-Quan(姜年权)c)
a Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China; b College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;  c College of Physics and Electric Information, Wenzhou University, Wenzhou 325035, China
Abstract  This paper solves the newly constructed nonlinear master equation dρ/dt=κ[2f(N)aρ(1/f(N-1) )a$\dagger$-a$\dagger$aρ -ρa$\dagger$a] , where f(N) is an operator-valued function of N=a$\dagger$a, for describing amplitude damping channel, and derives the infinite operator sum representation of quasi-Kraus operators for the density operator. It also shows that in this nonlinear process the initial pure number state density operator will evolve into the binomial field (a mixed state) when f(N)=1/√(N+1).
Keywords:  nonlinear master equation      operator sum representation      Kraus operator      binomial state  
Received:  21 February 2010      Revised:  29 March 2010      Accepted manuscript online: 
PACS:  02.30.Hq (Ordinary differential equations)  
  02.30.Sa (Functional analysis)  
  02.30.Tb (Operator theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174) and the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ10097).

Cite this article: 

Fan Hong-Yi(范洪义), Ren Gang(任刚), Hu Li-Yun(胡利云), and Jiang Nian-Quan(姜年权) Solving nonlinear master equation describing quantum damping by virtue of the entangled state representation 2010 Chin. Phys. B 19 114206

[1] Gardiner C and Zoller P 2000 Quantum Noise (Berlin: Springer)
[2] de Matos Filho R L and Vogel W 1996 Phys. Rev. A bf54 4560
[3] Man'ko V I, Marmo G, Zaccaria F and Sudarshan E C G 1996 Proc. 4th Wigner Symp., Atakishiyev N et al. (eds.) (Singapore: World Scientific)
[4] Man'ko V I and Wunsche A 1997 wxQuantum Semiclass. Opt.9 381
[5] Jones Haight G N and Lee C T 1997 wxQuantum Semiclass. Opt.9 411
[6] Dodonov V V, Korennoy Y A, Man'ko V I and Moukhin Y A 1996 wxQuantum Seminclass. Opt.8 413
[7] Roy B and Roy P 1999 wxJ. Opt. B: Quantum Semiclass. Opt.1 341
[8] Roy B 1998 wxPhys. Lett. A249 25
[9] Mancini S 1997 wxPhys. Lett. A233 291
[10] Sivakumar S 1998 wxPhys. Lett. A250 257
[11] Sivakumar S 1999 wxJ. Phys. A32 3441
[12] Sivakumar S 2000 wxJ. Phys. A33 2289
[13] Fan H Y and Cheng H L 2001 wxPhys. Lett. A285 256
[14] Fan H Y and Hu L Y 2008 Modern Phys. Lett. B bf22 2435
[15] Fan H Y and Hu L Y 2008 Opt. Commun. doi:10.1016/j.optcom.2008.08.002.
[16] Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientic and Technical Press) (in Chinese)
[17] Hu L Y and Fan H Y 2009 Chin. Phys. B bf18 902
[18] Fan H Y and Hu L Y 2009 Chin. Phys. B bf18 611
[16] Xu X L, Li H Q and Fan H Y 2009 Chin. Phys. B bf18 918
[1] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[2] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[3] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[4] Wigner functions and tomograms of the even and odd binomial states
Zhang Xiao-Yan(张晓燕), Wang Ji-Suo(王继锁), Meng Xiang-Guo(孟祥国), and Su Jie(苏杰). Chin. Phys. B, 2009, 18(2): 604-610.
[5] Entanglement and photon statistics of output fields from beam splitter for binomial state inputs
Zhou Qing-Ping (周清平), Fang Mao-Fa (方卯发). Chin. Phys. B, 2004, 13(9): 1477-1486.
No Suggested Reading articles found!