Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107203    DOI: 10.1088/1674-1056/19/10/107203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The transverse laser induced thermoelectric voltages in step flow growth (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 thin films

Shang Jie(尚杰)a), Zhang Hui(张辉)a), Li Yong(李勇)a), Cao Ming-Gang(曹明刚)a), and Zhang Peng-Xiang(张鹏翔)a)b)†
a Institute of Advanced Materials for Photoelectronics, Kunming University of Science and Technology, Kunming 650051, China; MPI, FKF, Stuttgart D-70569, Germany
Abstract  This paper reports that the transverse laser induced thermoelectric voltages (LITV) are observed for the first time in the step flow growth (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT, x=0.20, 0.33, 0.50) thin films deposited on vicinal-cut strontium titanate single crystal substrates. Because lead magnesium niobate-lead titanate is a solid solution of lead magnesium niobate (PMN) and lead titanate (PT), there are two types of signals. One is wide with a time response of a microsecond, and the other superimposed with the wide signal is narrow with a time response of a nanosecond. The transverse LITV signals depend on the ratio of PMN to PT drastically. Under the irradiation of 28-ns pulsed KrF excimer laser with the 248-nm wavelength,the largest induced voltage is observed in the 0.50Pb(Mg1/3Nb2/3)O3–0.50 PbTiO3 films. Moreover, the effects of film thickness, substrates, and tilt angles of substrates are also investigated.
Keywords:  laser induced thermoelectric voltage      (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 films      anisotropic Seebeck effect  
Received:  30 November 2009      Revised:  23 April 2010      Accepted manuscript online: 
PACS:  42.62.-b (Laser applications)  
  68.55.-a (Thin film structure and morphology)  
  68.55.A- (Nucleation and growth)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
  81.15.Fg (Pulsed laser ablation deposition)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10274026).

Cite this article: 

Shang Jie(尚杰), Zhang Hui(张辉), Li Yong(李勇), Cao Ming-Gang(曹明刚), and Zhang Peng-Xiang(张鹏翔) The transverse laser induced thermoelectric voltages in step flow growth (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 thin films 2010 Chin. Phys. B 19 107203

[1] Zhou D, Lou L H, Wang F F, Jia Y M, Zhao X Y and Luo H S 2008 Acta Phys. Sin. 57 4552 (in Chinese)
[2] Jayasingh E M, Prabhakaran K, Sooraj R, Durgaprasad C and Sharma S C 2009 Ceramics International 35 591
[3] Smolenskii G A and Agranovskaya A I 1958 Sov. Phys. Tech. Phys. (Engl. Transl.) 3 1380
[4] Smolenskii G A and Agranovskaya A I 1959 Sov. Phys. Solid State 1 1429
[5] Smolenskii G A, Isupov V A, Agranovskaya A I and Popov S N 1961 Sov. Phys. Solid State 2 2584
[6] Krillov V V and Isupov V A 1973 Ferroelectrics 5 3
[7] Cross L E 1987 Ferroelectrics 76 241
[8] Cross L E 1994 Relaxor Ferroelectrics: an Overview, Ferroelectrics 151 305
[9] Feng Z Y, Luo H S, Yin Z W, Guang H L and Ling N 2003 Acta Phys. Sin. 53 3609 (in Chinese)
[10] Panda P K and Sahoo B 2005 Materials Chemistry and Physics 93 231
[11] Swartz S L, Shrout T R, Schulze W A, Cross L E and Am J 1984 Ceram. Soc. 67 311
[12] Nomura S and Uchino K 1982 Ferroelectrics 41 117
[13] Uchino K and Am J 1986 Ceram. Soc. Bull. 65 647
[14] Shrout T R, Halliyal A and Am J 1987 Ceram. Soc. Bull. 66 704
[15] Chen J, Harmer M P and Am J 1990 Ceram. Soc. 73 68
[16] Park S E and Shrout T R 1997 J. Appl. Phys. 82 1804
[17] Shrout T R, Chang Z P, Kim N and Markgraf S 1990 Ferroelectrics Lett. Sect. 12 63
[18] Ghasemifard M, Hosseini S M and Khorrami G H 2009 Ceramics International 35 36
[19] Damjanovic D and Newnham R E 1992 J. Intell. Mater. Syst. Struct. 3 190
[20] Uchino K 1986 IEEE Trans.Ultrason., Ferroelectr. Freq. Control 33 806
[21] Zhang G Y, Zhang P X, Zheng H R, Zhang X Y, Gao D L, Zhang H, Pi L and Lee W K 2008 Optics & Laser Technology 40 845 endfootnotesize
[1] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[2] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[3] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[4] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[5] Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier
Xue Deng(邓雪), Dong-Dong Jiao(焦东东), Jie Liu(刘杰), Qi Zang(臧琦), Xiang Zhang(张翔), Dan Wang(王丹), Jing Gao(高静), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(5): 054205.
[6] Macadam's theory in RGB laser display
Guan Wang(王贯), Yuhua Yang(杨雨桦), Tianhao Dong(董天浩), Chun Gu(顾春), Lixin Xu(许立新), Zhongcan Ouyang(欧阳钟灿), Zuyan Xu(许祖彦). Chin. Phys. B, 2019, 28(6): 064209.
[7] Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell
Xing Tian(田兴), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Kun Liu(刘锟), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2019, 28(6): 063301.
[8] An improved arctangent algorithm based on phase-locked loop for heterodyne detection system
Chun-Hui Yan(晏春回), Ting-Feng Wang(王挺峰), Yuan-Yang Li(李远洋), Tao Lv(吕韬), Shi-Song Wu(吴世松). Chin. Phys. B, 2019, 28(3): 030701.
[9] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[10] Novel inspection of welded joint microstructure using magneto-optical imaging technology
Xiang-dong Gao(高向东), Zheng-wen Li(李正文), De-yong You(游德勇), Seiji Katayama. Chin. Phys. B, 2017, 26(5): 054214.
[11] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[12] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[13] Locating the position of objects in non-line-of-sight based on time delay estimation
Xue-Feng Wang(王雪峰), Yuan-Qing Wang(王元庆), Jin-Shan Su(苏金善), Xing-Yu Yang(杨兴雨). Chin. Phys. B, 2016, 25(8): 084203.
[14] How to detect melting in laser heating diamond anvil cell
Liuxiang Yang(杨留响). Chin. Phys. B, 2016, 25(7): 076201.
[15] Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame
Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(6): 060703.
No Suggested Reading articles found!