Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(2): 697-701    DOI: 10.1088/1674-1056/17/2/056
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Cooper-pair number-phase quantization analysis in double-Josephson-junction mesoscopic circuit coupled by a capacitor

Liang Bao-Long(梁宝龙)a), Wang Ji-Suo(王继锁)a)†, and Fan Hong-Yi(范洪义)b)c)
a School of Physical Science and Information Engineering,Liaocheng University, Liaocheng 252059, Chinab Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, Chinac Department of Physics, Shanghai Jiaotong University, Shanghai 200030, China
Abstract  This paper examines the quantization of mesoscopic circuit including Josephson junctions. Following Feynman's assumption, via the Hamilton dynamic approach and by virtue of the entangled state representation, it constructs Hamiltonian operator for the double-Josephson-junction mesoscopic circuit coupled by a capacitor. Then it uses the Heisenberg equation of motion to derive the induction voltage across each Josephson junction. The result manifestly shows how the voltage is affected by the capacitance coupling.
Keywords:  Josephson-junction      Cooper-pair      entangled state representation      phase squeezing  
Received:  23 June 2007      Revised:  03 July 2007      Accepted manuscript online: 
PACS:  85.25.Cp (Josephson devices)  
  84.32.Tt (Capacitors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10574060) and the Natural Science Foundation (Grant No Y2004A09) of Shandong Province, China.

Cite this article: 

Liang Bao-Long(梁宝龙), Wang Ji-Suo(王继锁), and Fan Hong-Yi(范洪义) Cooper-pair number-phase quantization analysis in double-Josephson-junction mesoscopic circuit coupled by a capacitor 2008 Chin. Phys. B 17 697

[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[4] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[5] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[6] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[7] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[8] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[9] Squeezing entangled state of two particles with unequal masses
Yang Yang (杨阳), Fan Hong-Yi (范洪义). Chin. Phys. B, 2013, 22(3): 030306.
[10] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[11] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[12] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[13] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
[14] Quantum mechanical photoncount formula derived by entangled state representation
Hu Li-Yun(胡利云), Wang Zi-Sheng(王资生), L. C. Kwek, and Fan Hong-Yi(范洪义). Chin. Phys. B, 2011, 20(8): 084203.
[15] Time evolution of distribution functions in dissipative environments
Hu Li-Yun(胡利云), Chen Fei(陈菲), Wang Zi-Sheng(王资生), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2011, 20(7): 074204.
No Suggested Reading articles found!