Abstract Multiferroic NiFe2O4--BaTiO3 (BTO) bilayered thin films are epitaxially grown on (001) Nb-doped SrTiO$_{3}$ (STO) substrates by pulsed-laser deposition (PLD). Different growth sequences of NFO and BTO on the substrate yield two kinds of epitaxial heterostructures with (001)-orientation, i.e. (001)-NFO/(001)-BTO/substrate and (001)-BTO/(001)-NFO/substrate. Microstructure studies from x-ray diffraction (XRD) and electron microscopies show differences between these two heterostructures, which result in different multiferroic behaviours. The heterostructured composite films exhibit good coexistence of both ferroelectric and ferromagnetic properties, in particular, obvious magnetoelectric (ME) effect on coupling response.
Received: 17 September 2007
Revised: 24 October 2008
Accepted manuscript online:
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
Fund: Project supported by the State Key
Development Program for Basic Research of China (Grant No
2002CB613303) and the National High Technology Research and
Development Program for Advanced Materials of China (Grant No
2006AA03Z101) and the National Natural Science Foundation of China
(Grant Nos 10574078 and 50621201).
Cite this article:
Zhang Yi(张毅), Deng Chao-Yong(邓朝勇), Ma Jing(马静), Lin Yuan-Hua(林元华), and Nan Ce-Wen(南策文) Multiferroic behaviour of epitaxial NiFe2O4--BaTiO3 heterostructures 2008 Chin. Phys. B 17 3910
Raman phonons in multiferroic FeVO4 crystals Zhang An-Min (张安民), Liu Kai (刘凯), Ji Jian-Ting (籍建葶), He Chang-Zhen (何长振), Tian Yong (田勇), Jin Feng (金峰), Zhang Qing-Ming (张清明). Chin. Phys. B, 2015, 24(12): 126301.
[14]
Al-doping-induced magnetocapacitance in the multiferroic AgCrS2 Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.