Abstract In this paper, surface photovoltage spectroscopy (SPS) is used to determine the electronic structure of the hydrogenated transition Si films. All samples are prepared by using helicon wave plasma-enhanced chemical vapour deposition technique, the films exhibit a transition from the amorphous phase to the microcrystalline phase with increasing temperature. The film deposited at lower substrate temperature has the amorphous-like electronic structure with two types of dominant defect states corresponding to the occupied Si dangling bond states (D0/D- and the empty Si dangling states (D+). At higher substrate temperature, the crystallinity of the deposited films increases, while their band gap energy decreases. Meanwhile, two types of additional defect states is incorporate into the films as compared with the amorphous counterpart, which is attributed to the interface defect states between the microcrystalline Si grains and the amorphous matrix. The relative SPS intensity of these two kinds of defect states in samples deposited above 300℃ increases first and decreases afterwards, which may be interpreted as a result of the competition between hydrogen release and crystalline grain size increment with increasing substrate temperature.
Received: 04 August 2006
Revised: 12 December 2006
Accepted manuscript online:
Fund: Project supported by the Natural
Foundation of Hebei province, People's Republic of China (Grant No
503129).
Cite this article:
Yu Wei(于威), Wang Chun-Sheng(王春生), Lu Wan-Bing(路万兵), He Jie(何杰), Han Xiao-Xia(韩晓霞), and Fu Guang-Sheng(傅广生) Electronic structure and defect states of transition films from amorphous to microcrystalline silicon studied by surface photovoltage spectroscopy 2007 Chinese Physics 16 2310
Influence of Boron doping on microcrystalline silicon growth Li Xin-Li(李新利), Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Li Rui(李瑞), Jiao Yue-Chao(焦岳超), Gao Hai-Bo(高海波), and Wang Guo(王果) . Chin. Phys. B, 2011, 20(9): 096801.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.