Please wait a minute...
Chinese Physics, 2007, Vol. 16(7): 2123-2130    DOI: 10.1088/1009-1963/16/7/055
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical investigation of exchange bias

Xiong Zhi-Jie(熊知杰)a), Wang Huai-Yu(王怀玉)b), and Ding Ze-Jun(丁泽军)a)
a Department of Physics, University of Science and Technology of China, Hefei 230026, China; b Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  The exchange bias of bilayer magnetic films consisting of ferromagnetic (FM) and antiferromagnetic (AFM) layers in an uncompensated case is studied by use of the many-body Green's function method of quantum statistical theory. The effects of the layer thickness and temperature and the interfacial coupling strength on the exchange bias HE are investigated. The dependence of the exchange bias HE on the FM layer thickness and temperature is qualitatively in agreement with experimental results. When temperature varies, both the coercivity HC and HE decrease with the temperature increasing. For each FM thickness, there exists a least AFM thickness in which the exchange bias occurs, which is called pinning thickness.
Keywords:  exchange bias      coercivity      uncompensated case      Heisenberg Hamiltonian  
Received:  24 November 2006      Revised:  18 January 2007      Accepted manuscript online: 
PACS:  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.10.-b (General theory and models of magnetic ordering)  
  75.50.Ee (Antiferromagnetics)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
Fund: Project supported by the National~Natural Science Foundation of China (Grant Nos 10574121, 90406024 and 10025420), Chinese Education Ministry and Chinese Academy of Sciences.

Cite this article: 

Xiong Zhi-Jie(熊知杰), Wang Huai-Yu(王怀玉), and Ding Ze-Jun(丁泽军) Theoretical investigation of exchange bias 2007 Chinese Physics 16 2123

[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[3] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[4] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[5] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[6] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[7] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[8] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[9] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[10] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[11] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[12] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[13] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[14] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[15] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
No Suggested Reading articles found!