Please wait a minute...
Chinese Physics, 2007, Vol. 16(2): 456-462    DOI: 10.1088/1009-1963/16/2/028
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Intense laser beam guiding in self-induced electron cavitation channel in underdense plasmas

Cang Yu(苍宇)a), Yu Wei(余玮)a), Wu Hui-Chun(武慧春)b), Xu Han(徐涵)a), and Tian You-Wei(田友伟)a)
a State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; b Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
Abstract  In underdense plasmas, the transverse ponderomotive force of an intense laser beam with Gaussian transverse profile expels electrons radially, and it can lead to an electron cavitation. An improved cavitation model with charge conservation constraint is applied to the determination of the width of the electron cavity. The envelope equation for laser spot size derived by using source-dependent expansion method is extended to including the electron cavity. The condition for self-guiding is given and illuminated by an effective potential for the laser spot size. The effects of the laser power, plasma density and energy dissipation on the self-guiding condition are discussed.
Keywords:  relativistic self-focusing      ponderomotive self-channelling      self-induced electron cavitation      self-guiding  
Received:  09 June 2006      Revised:  28 August 2006      Accepted manuscript online: 
PACS:  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
Fund: Project supported by the National High Technology Inertial Confinement Fusion Foundation (Grant No 10335020/A0506), the National Natural Science Foundation of China (Grant Nos 10474081 and 10576035), and Natural Science Foundation of Shanghai (Grant No 05ZR14159).

Cite this article: 

Cang Yu(苍宇), Yu Wei(余玮), Wu Hui-Chun(武慧春), Xu Han(徐涵), and Tian You-Wei(田友伟) Intense laser beam guiding in self-induced electron cavitation channel in underdense plasmas 2007 Chinese Physics 16 456

[1] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[2] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[3] Nonlinear propagation of an intense Laguerre-Gaussian laser pulse in a plasma channel
Mingping Liu(刘明萍), Zhen Zhang(张震), and Suhui Deng(邓素辉). Chin. Phys. B, 2021, 30(5): 055204.
[4] Effect of the distance between focusing lens and target surface on quantitative analysis of Mn element in aluminum alloys by using filament-induced breakdown spectroscopy
Xue-Tong Lu(陆雪童), Shang-Yong Zhao(赵上勇), Xun Gao(高勋), Kai-Min Guo(郭凯敏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2020, 29(12): 124209.
[5] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[6] Tunneling dynamics of bosons in the diamond lattice chain
Na-Na Chang(常娜娜), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(10): 105203.
[7] Properties of long light filaments in natural environment
Shi-You Chen(陈式有), Hao Teng(滕浩), Xin Lu(鲁欣), Zong-Wei Shen(沈忠伟), Shuang Qin(秦爽), Wen-Shou Wei(魏文寿), Rong-Yi Chen(陈荣毅), Li-Ming Chen(陈黎明), Yu-Tong Li(李玉同), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 085203.
[8] Influence of cutting off position of plasma filament formed by two-color femtosecond laser on terahertz generation
Zhan-Qiang Xue(薛占强), Li-Ping Shang(尚丽平), Hu Deng(邓琥), Qian-Cheng Zhang(张前成), Quan-Cheng Liu(刘泉澄), Wei-Wei Qu(屈薇薇), Zhan-Feng Li(李占锋), Shun-Li Wang(王顺利). Chin. Phys. B, 2018, 27(5): 054101.
[9] Tunneling dynamics of a few bosons with both two-and three-body interactions in a double-well potential
Na-Na Chang(常娜娜), Zi-Fa Yu(鱼自发), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2017, 26(11): 115202.
[10] Dynamics of laser beams in inhomogeneous electron—positron—ion plasmas
Cheng Li-Hong (成丽红), Tang Rong-An (唐荣安), Du Hong-E (杜宏娥), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2015, 24(7): 075201.
[11] Enhancement of third harmonic generation in air filamentation using obstacles
Liu Xiao-Long (刘晓龙), Lu Xin (鲁欣), Du Zhi-Gui (杜志贵), Ma Jing-Long (马景龙), Li Yu-Tong (李玉同), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(3): 034207.
[12] Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions
Liu Tie-Lu (刘铁路), Wang Yun-Liang (王云良), Lu Yan-Zhen (路彦珍). Chin. Phys. B, 2015, 24(2): 025202.
[13] Femtosecond filamentation induced fluorescence technique for atmospheric sensing
Yuan Shuai (袁帅), Chin See Leang (陈瑞良), Zeng He-Ping (曾和平). Chin. Phys. B, 2015, 24(1): 014208.
[14] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang (刘天航), Hao Zuo-Qiang (郝作强), Gao Xun (高勋), Liu Ze-Hao (刘泽昊), Lin Jing-Quan (林景全). Chin. Phys. B, 2014, 23(8): 085203.
[15] Spectral modulation and supercontinuum generation assisted by infrared femtosecond plasma grating
Liu Zuo-Ye (刘作业), Sun Shao-Hua (孙少华), Shi Yan-Chao (史彦超), Ding Peng-Ji (丁鹏基), Liu Qing-Cao (刘情操), Liu Xiao-Liang (刘小亮), Ding Bao-Wei (丁宝卫), Hu Bi-Tao (胡碧涛). Chin. Phys. B, 2013, 22(7): 075204.
No Suggested Reading articles found!