Abstract Spectral sensitization micromechanism of cyanine dyes J-aggregate adsorbed on the tabular and cubic AgBr microcrystals with different dye concentrations is studied by using picosecond time-resolved fluorescence spectroscopy, and the dependences of electron transfer and spectral efficiency sensitization on different conditions are analysed in detail. With the steady spectroscopy, the wavelengths of absorption and fluorescence of J-aggregate adsorbed on AgBr microcrystals are found to shift to red relative to dye monomer. The spectrum of fluorescence has a red shift relative to the absorption peak. With the time-resolved fluorescence spectroscopy, the fluorescence decay curves of cyanine dyes J-aggregate adsorbed on the tabular and cubic AgBr grains are found to be fitted well by a double-exponential decay function. The fitting curves consist of a fast and a slow component. Because of the large amplitude of the fast component, this fast decay should be attributable mainly to the electron transfer from J-aggregate of dye to a conduction band of AgBr.
Received: 11 July 2005
Revised: 23 February 2006
Accepted manuscript online:
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 60478033, 10274017
and 10354001), the Natural Science Foundation of Hebei Province of China (Grant No 603138), Science and Technology Program of Hebei Province of China (Gran
Cite this article:
Yang Shao-Peng (杨少鹏), Fan Guo-Zhi (范国志), Fan Shan-Shan (范闪闪), Cao Ning (曹 宁), Li Xiao-Wei (李晓苇), Jiang Xiao-Li (江晓利), Fu Guang-Sheng (傅广生) Kinetics study of ultrafast electron transfer from sensitized dyes to silver halide microcrystals 2006 Chinese Physics 15 1055
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.