Please wait a minute...
Chinese Physics, 2005, Vol. 14(6): 1136-1141    DOI: 10.1088/1009-1963/14/6/014
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Application of an approximate vectorial diffraction model to analysing diffractive micro-optical elements

Niu Chun-Hui (牛春晖)a, Li Zhi-Yuan (李志远)a, Ye Jia-Sheng (叶佳声)b, Gu Bei-Yuan (顾本源)a
a Institute of Physics Academy of Sciences, Beijing 10080, China; b Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  Scalar diffraction theory, although simple and efficient, is too rough for analyzing diffractive micro-optical elements. Rigorous vectorial diffraction theory requires extensive numerical efforts,and is not a convenient design tool. In this paper we employ a simple approximate vectorial diffraction model which combines the principle of the scalar diffraction theory with an approximate local field model to analyze the diffraction of optical waves by some typical two-dimensional diffractive micro-optical elements. Both the TE and TM polarization modes are considered. We have found that the approximate vectorial diffraction model can agree much better with the rigorous electromagnetic simulation results than the scalar diffraction theory for these micro-optical elements.
Keywords:  Approximate vectorial diffractive theory      Micro-optical diffractive elements  
Received:  15 December 2004      Revised:  26 January 2005      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.79.Dj (Gratings)  
  42.25.Bs (Wave propagation, transmission and absorption)  

Cite this article: 

Niu Chun-Hui (牛春晖), Li Zhi-Yuan (李志远), Ye Jia-Sheng (叶佳声), Gu Bei-Yuan (顾本源) Application of an approximate vectorial diffraction model to analysing diffractive micro-optical elements 2005 Chinese Physics 14 1136

[1] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[2] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[3] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[4] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[5] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[6] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[7] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[8] Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping
Fan Yang(杨帆), Yang Zhao(赵杨), Chengchao Xiang(向成超), Qi Feng(冯祺), and Yingchun Ding(丁迎春). Chin. Phys. B, 2021, 30(4): 044207.
[9] Reflectionless spatial beam benders with arbitrary bending angle by introducing optic-null medium into transformation optics
Fei Sun(孙非), Yi-Chao Liu(刘一超), Yi-Biao Yang(杨毅彪), Hong-Ming Fei(费宏明), Zhi-Hui Chen(陈智辉), and Sai-Ling He(何赛灵). Chin. Phys. B, 2021, 30(3): 034101.
[10] Far-zone behaviors of scattering-induced statistical properties of partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam
Yan Li(李艳), Ming Gao(高明)†, Hong Lv(吕宏), Li-Guo Wang(王利国), and Shen-He Ren(任神河). Chin. Phys. B, 2020, 29(10): 104201.
[11] Zone plate design for generating annular-focused beams
Yong Chen(陈勇), Lai Wei(魏来), Qiang-Qiang Zhang(张强强), Quan-Ping Fan(范全平), Zu-Hua Yang(杨祖华), and Lei-Feng Cao(曹磊峰)†. Chin. Phys. B, 2020, 29(10): 104202.
[12] Gain-induced large optical torque in optical twist settings
Genyan Li(李艮艳), Xiao Li(李肖), Lei Zhang(张磊), Jun Chen(陈君). Chin. Phys. B, 2020, 29(8): 084201.
[13] Propagation properties of radially polarized Pearcey-Gauss vortex beams in free space
Xinpeng Chen(陈鑫鹏), Chuangjie Xu(许创杰), Qian Yang(杨芊), Zhiming Luo(罗智明), Xixian Li(李希贤), Dongmei Deng(邓冬梅). Chin. Phys. B, 2020, 29(6): 064202.
[14] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[15] Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential
Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江). Chin. Phys. B, 2020, 29(5): 054201.
No Suggested Reading articles found!