Please wait a minute...
Chinese Physics, 2001, Vol. 10(5): 373-375    DOI: 10.1088/1009-1963/10/5/301
GENERAL   Next  

ON THE FORM INVARIANCE OF NIELSEN EQUATIONS

Wang Shu-yong (王树勇), Mei Feng-xiang (梅凤翔)
Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
Abstract  The definition and criterion of the form invariance of Nielsen equations are given. The relation between the form invariance and the Noether symmetry is studied. Some examples are given to illustrate the application of the result.
Keywords:  Nielsen equation      form invariance      Noether symmetry  
Received:  02 December 2000      Revised:  27 December 2000      Accepted manuscript online: 
PACS:  02.20.-a (Group theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.19972010) and the Doctoral Program Foundation of Institution of Higher Education of China.

Cite this article: 

Wang Shu-yong (王树勇), Mei Feng-xiang (梅凤翔) ON THE FORM INVARIANCE OF NIELSEN EQUATIONS 2001 Chinese Physics 10 373

[1] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[2] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[3] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling (赵纲领), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Hong Fang-Yu (洪方昱). Chin. Phys. B, 2013, 22(3): 030201.
[4] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[5] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[6] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[7] A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints
Han Yue-Lin (韩月林), Sun Xian-Ting (孙现亭), Wang Xiao-Xiao (王肖肖), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2012, 21(12): 120201.
[8] Hamilton formalism and Noether symmetry for mechanico–electrical systems with fractional derivatives
Zhang Shi-Hua (张世华), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2012, 21(10): 100202.
[9] Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(12): 124501.
[10] Weak Noether symmetry for a nonholonomic controllable mechanical system
Xia Li-Li(夏丽莉) and Shan Ling-Fang(山灵芳). Chin. Phys. B, 2010, 19(9): 090302.
[11] Form invariance and new conserved quantity of generalised Birkhoffian system
Mei Feng-Xiang(梅凤翔) and Wu Hui-Bin(吴惠彬). Chin. Phys. B, 2010, 19(5): 050301.
[12] Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic system of Chetaev's type with variable mass
Yang Xin-Fang(杨新芳), Jia Li-Qun(贾利群), Cui Jin-Chao(崔金超), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2010, 19(3): 030305.
[13] Symmetry and conserved quantities of discrete generalized Birkhoffian system
Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕). Chin. Phys. B, 2010, 19(12): 124601.
[14] Mei conserved quantity of the Nielsen equation for a non-Chetaev-type non-holonomic system
Cui Jin-Chao(崔金超), Zhang Yao-Yu(张耀宇) , and Jia Li-Qun(贾利群). Chin. Phys. B, 2009, 18(5): 1731-1736.
[15] Weak Noether symmetry for nonholonomic systems of non-Chetaev type
Xie Jia-Fang(解加芳), Gang Tie-Qiang(冮铁强), and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2008, 17(9): 3175-3179.
No Suggested Reading articles found!