Please wait a minute...
Chinese Physics, 2000, Vol. 9(9): 641-648    DOI: 10.1088/1009-1963/9/9/001
GENERAL   Next  

SELF-ORGANIZED CRITICALITY IN ONE-DIMENSIONAL PACKET FLOW MODEL

Yuan Jian (袁坚), Ren Yong (任勇), Shan Xiu-ming (山秀明)
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  Packet flow affects the behavior of Internet routers, which in return regulates the flow. Even a non-correlated uniform packet flow from a terminal will be modulated to show correlated fluctuations by going through the network nodes. In this paper, we study a simple model in an abstract level to describe intuitively the self-organized criticality in packet level, the emergence of collective behavior of packets, which causes the long-range dependence of congestion in computer networks. We find that the character of the jam lifetime is consistent with the measurement results, the packet delivery time appears the feature of 1/f noise, and the intervals between the packet arrivals are power-law distributed.
Keywords:  computer network      packet      congestion      self-organized criticality  
Received:  22 January 2000      Revised:  13 May 2000      Accepted manuscript online: 
PACS:  05.40.Ca (Noise)  
  89.20.Hh (World Wide Web, Internet)  

Cite this article: 

Yuan Jian (袁坚), Ren Yong (任勇), Shan Xiu-ming (山秀明) SELF-ORGANIZED CRITICALITY IN ONE-DIMENSIONAL PACKET FLOW MODEL 2000 Chinese Physics 9 641

[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[3] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[4] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[5] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[6] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
[7] Major impact of queue-rule choice on the performance of dynamic networks with limited buffer size
Xiang Ling(凌翔), Xiao-Kun Wang(王晓坤), Jun-Jie Chen(陈俊杰), Dong Liu(刘冬), Kong-Jin Zhu(朱孔金), Ning Guo(郭宁). Chin. Phys. B, 2020, 29(1): 018901.
[8] Quasi-periodic events on structured earthquake models
Bin-Quan Li(李斌全), Zhi-Xi Wu(吴枝喜), Sheng-Jun Wang(王圣军). Chin. Phys. B, 2019, 28(9): 090503.
[9] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[10] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[11] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[12] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[13] Delay time dependence of wave packet motion and population transfer of four-level K2 molecule in pump-pump-probe pulses
Zhiqiang Chang(常志强), Changming Li(李昌明), Wei Guo(郭玮), Hongbin Yao(姚洪斌). Chin. Phys. B, 2018, 27(5): 053301.
[14] Novel potential energy surface-based quantum dynamics of ion-molecule reaction O++D2 →OD++D
Xian-Long Wang(王宪龙), Feng Gao(高峰), Shou-Bao Gao(高守宝), Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2018, 27(4): 043104.
[15] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
No Suggested Reading articles found!