Please wait a minute...
Chinese Physics, 2000, Vol. 9(1): 5-8    DOI: 10.1088/1009-1963/9/1/002
GENERAL Prev   Next  

ENERGY SPECTRUM AND WAVE FUNCTION FOR MULTI-MODE COUPLED NON-IDENTICAL HARMONIC OSCILLATORS

Lu Huai-xin (逯怀新)a)d), Liu Ke-jia (刘克家)b)d), Pan Jian-wei (潘建伟)c), Zhang Yong-de (张永德)b)
aDepartment of Physics, Changwei Teachers College, Weifang 261043, China; b Department of Metalurgy, Guizhou University of Technology, Guiyang 550003, China; c Institut fur Experimental Physik, Universitat Innsbruck Technikerstrasse 25, A-6020, Innsbruck, Austria; dDepartment of Modern Physics, University of Science and Technology of China, Hefei 230027, China 
Abstract  By means of the linear quantum transformation theory, we consisely derive the exact solution including energy spectrum and wave function for multi-mode coupled non-identical harmonic oscillators.
Received:  09 June 1999      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  03.65.Ge (Solutions of wave equations: bound states)  

Cite this article: 

Lu Huai-xin (逯怀新), Liu Ke-jia (刘克家), Pan Jian-wei (潘建伟), Zhang Yong-de (张永德) ENERGY SPECTRUM AND WAVE FUNCTION FOR MULTI-MODE COUPLED NON-IDENTICAL HARMONIC OSCILLATORS 2000 Chinese Physics 9 5

[1] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[2] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[3] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[4] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
[5] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[6] Introducing the general condition for an operator in curved space to be unitary
Jafari Matehkolaee Mehdi. Chin. Phys. B, 2021, 30(8): 080301.
[7] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[8] Lie transformation on shortcut to adiabaticity in parametric driving quantum systems
Jian-Jian Cheng(程剑剑), Yao Du(杜瑶), and Lin Zhang(张林). Chin. Phys. B, 2021, 30(6): 060302.
[9] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[10] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[11] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[12] Inverse problem of quadratic time-dependent Hamiltonians
Guo Guang-Jie (郭光杰), Meng Yan (孟艳), Chang Hong (常虹), Duan Hui-Zeng (段会增), Di Bing (邸冰). Chin. Phys. B, 2015, 24(8): 080301.
[13] Solutions of the D-dimensional Schrödinger equation with Killingbeck potential: Lie algebraic approach
H. Panahi, S. Zarrinkamar, M. Baradaran. Chin. Phys. B, 2015, 24(6): 060301.
[14] Cluster algebra structure on the finite dimensional representations of affine quantum group Uq(Â3)
Yang Yan-Min (杨彦敏), Ma Hai-Tao (马海涛), Lin Bing-Sheng (林冰生), Zheng Zhu-Jun (郑驻军). Chin. Phys. B, 2015, 24(1): 010201.
[15] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
No Suggested Reading articles found!