| SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Local time reversal symmetry breaking induced attenuation and localization of phonon transmission |
| Yu-Jia Zeng(曾育佳)1,†, Qi-Zhuang Qu(曲其壮)1, Zhong-Ke Ding(丁中科)2, and Wu-Xing Zhou(周五星)1,‡ |
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; 2 School of Physics and Electronics Science, Changsha University of Science and Technology, Changsha 410114, China |
|
|
|
|
Abstract Time-reversal symmetry (TRS) breaking induced dissipationless topological phonon edge modes provide an unprecedented way to manipulate phonon transport. However, the effect of TRS breaking on the transport properties of bulk phonon modes is still unclear. In this work, we assess the effect of local TRS-breaking domains on the transport properties of bulk phonon modes in a two-dimensional (2D) hexagonal phononic lattice model. The results show that bulk phonon modes can be strongly scattered by local TRS breaking owing to the shift of the local phonon band gap, which results in significant suppression of phonon transmission. Moreover, we show that the aperiodic distribution of local TRS-breaking domains can induce phonon Anderson localization, and the localization length can be effectively tuned by the strength of TRS breaking. Our study suggests that TRS breaking can not only be used to construct dissipationless topological phonon edge states, but also be used to block the transmission of bulk phonon modes by carefully controlling the size and distribution of TRS-breaking domains. Such results provide a highly alternative way for manipulating energy flux at the nanoscale.
|
Received: 11 June 2025
Revised: 27 July 2025
Accepted manuscript online: 31 July 2025
|
|
PACS:
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
| |
63.20.D-
|
(Phonon states and bands, normal modes, and phonon dispersion)
|
| |
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
| |
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12404011), the Natural Science Foundation of Hunan Province (Grant No. 2023JJ40273), and the Scientific Research Foundation of Hunan Provincial Education Department (Grant No. 23B0495). |
Corresponding Authors:
Yu-Jia Zeng, Wu-Xing Zhou
E-mail: zengyujia@hnust.edu.cn;wuxingzhou@hnu.edu.cn
|
Cite this article:
Yu-Jia Zeng(曾育佳), Qi-Zhuang Qu(曲其壮), Zhong-Ke Ding(丁中科), and Wu-Xing Zhou(周五星) Local time reversal symmetry breaking induced attenuation and localization of phonon transmission 2025 Chin. Phys. B 34 116302
|
[1] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045 [2] Chen X K, Zhu J, Qi M, Jia P Z and Xie Z X 2025 Phys. Rev. Appl. 23 034085 [3] Zheng Y H, Zeng Y J, Xie G F and Zhou W X 2024 J. Appl. Phys. 136 164301 [4] Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873 [5] Gu X,Wei Y, Yin X, Li B and Yang R 2018 Rev. Mod. Phys. 90 041002 [6] Chen J, Xu X F, Zhou J and Li B W 2022 Rev. Mod. Phys. 94 025002 [7] Meng X, Pandey T, Jeong J, Fu S, Yang J, Chen K, Singh A, He F, Xu X and Zhou J 2019 Phys. Rev. Lett. 122 155901 [8] Wu C W, Ren X, Li S Y, Zeng Y J, Zhou W X and Xie G 2022 Appl. Phys. Lett. 121 172201 [9] Zeng Y J, Wu D, Cao X H, Feng Y X, Tang L M and Chen K Q 2020 J. Mater. Chem. A 8 11884 [10] Zeng Y J, Feng Y X, Tang L M and Chen K Q 2021 Appl. Phys. Lett. 118 183103 [11] Wei Y and He D 2023 Chin. Phys. Lett. 40 090502 [12] Wu M, Shi R, Qi R, Li Y, Feng T, Liu B, Yan J, Li X, Liu Z and Wang T 2023 Chin. Phys. Lett. 40 036801 [13] Jin H, Restrepo O D, Antolin N, Boona S R, Windl W, Myers R C and Heremans J P 2015 Nat. Mater. 14 601 [14] Tang D S and Cao B Y 2021 Int. J. Heat Mass Transfer 179 121659 [15] Sheng Y, Zhu H, Xie S, Lv Q, Xie H, Wang H, Lv R and Bao H 2025 Nat. Commun. 16 1970 [16] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [17] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [18] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 [19] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X and Fang Z 2009 Science 325 178 [20] Xu Y, Gan Z X and Zhang S C 2014 Phys. Rev. Lett. 112 226801 [21] Ding Z K, Zeng Y J, LiuW, Tang L M and Chen K Q 2024 Adv. Funct. Mater. 34 2401684 [22] Liu Y, Xu Y, Zhang S C and Duan W 2017 Phys. Rev. B 96 064106 [23] Wang P, Lu L and Bertoldi K 2015 Phys. Rev. Lett. 115 104302 [24] Wang Y T, Luan P G and Zhang S 2015 New J. Phys. 17 073031 [25] Kariyado T and Hatsugai Y 2015 Sci. Rep. 5 18107 [26] Stenull O, Kane C L and Lubensky T C 2016 Phys. Rev. Lett. 117 068001 [27] Liu Y, Lian C S, Li Y, Xu Y and Duan W 2017 Phys. Rev. Lett. 119 255901 [28] Ji W C and Shi J R 2017 Chin. Phys. Lett. 34 036301 [29] Tao Z, Wang Y, He S, Li J, Xue S, Su Z, Sun J, Peng H, Guo J and Zhu X 2025 Chin. Phys. Lett. 42 027405 [30] Li J, Wang L, Liu J, Li R, Zhang Z and Chen X Q 2020 Phys. Rev. B 101 081403 [31] Li F, Yu T, Lai J, Liu J, Liu P, Chen X Q and Sun Y 2024 Chin. Phys. Lett. 41 107301 [32] Zhang T, Song Z, Alexandradinata A, Weng H, Fang C, Lu L and Fang Z 2018 Phys. Rev. Lett. 120 016401 [33] Zhang T T, Miao H,Wang Q, Lin J Q, Cao Y, Fabbris G, Said A H, Liu X, Lei H C, Fang Z,Weng H M and Dean M P M 2019 Phys. Rev. Lett. 123 245302 [34] Wang Z, Zhou W, Rudenko A and Yuan S 2021 Phys. Rev. B 103 195137 [35] Jiang P, Hu S, Ouyang Y, Ren W, Yu C, Zhang Z and Chen J 2020 J. Appl. Phys. 127 235101 [36] Alidoosti M, Esfahani D N and Asgari R 2022 Phys. Rev. B 106 045301 [37] Yang Q L, Li W,Wang Z, Ning F l and Luo JW2024 Phys. Rev. B 109 125203 [38] Yang R, Yue S, Quan Y and Liao B 2021 Phys. Rev. B 103 184302 [39] Pan H, Tang L M and Chen K Q 2022 Phys. Rev. B 105 064401 [40] Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 107 104303 [41] Ong Z Y and Lee C H 2016 Phys. Rev. B 94 134203 [42] Ding Z K, Zeng Y J, Pan H, Luo N, Tang L M, Zeng J and Chen K Q 2024 Phys. Rev. B 109 245104 [43] Ding Z K, Zeng Y J, Pan H, Luo N, Zeng J, Tang L M and Chen K Q 2022 Phys. Rev. B 106 L121401 [44] Zimmermann J, Pavone P and Cuniberti G 2008 Phys. Rev. B 78 045410 [45] Ong Z Y and Zhang G 2015 Phys. Rev. B 91 174302 [46] Ong Z Y 2018 Phys. Rev. B 98 195301 [47] Ong Z Y 2018 J. Appl. Phys. 124 151101 [48] Juntunen T, Vänskä O and Tittonen I 2019 Phys. Rev. Lett. 122 105901 [49] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M and Li B 2018 J. Phys. Chem. Lett. 9 3959 [50] Hu R and Tian Z 2021 Phys. Rev. B 103 045304 [51] Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J and Chen J 2019 Nanoscale 11 11839 [52] Sun L, Zhai F, Cao Z, Huang X, Guo C, Wang H and Ni Y 2023 Chin. Phys. B 32 056301 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|