|
|
|
Analysis of the anomalous Doppler effect from quantum theory to classical dynamics simulations |
| Xinhang Xu(徐新航)1, Jinlin Xie(谢锦林)1,†, Jian Liu(刘健)2, and Wandong Liu(刘万东)1 |
1 Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei 230026, China; 2 Weihai Institute for Interdisciplinary Research, Shandong University, Weihai 264209, China |
|
|
|
|
Abstract The fundamental physics of anomalous and normal Doppler resonances between electrons and electromagnetic (EM) waves is analyzed using a quantum model that incorporates angular-momentum conservation. This work extends prior theory by explicitly linking the resonant integer m to the EM wave’s angular-momentum quantum number. Numerical simulations based on the volume-preserving algorithm (VPA) further confirm this correspondence. Moreover, a direct comparison of the energy-transfer ratio from translational energy to gyrokinetic energy during resonance, between classical dynamics and quantum predictions, is presented and verified numerically.
|
Received: 12 May 2025
Revised: 13 June 2025
Accepted manuscript online: 27 June 2025
|
|
PACS:
|
03.65. w
|
|
| |
33.35.+r
|
(Electron resonance and relaxation)
|
| |
02.60.Cb
|
(Numerical simulation; solution of equations)
|
| |
12.20. m
|
|
|
| Fund: This project is supported by the National Magnetic Confinement Fusion Energy Program of China (Grant No. 2019YFE03020001). |
Corresponding Authors:
Jinlin Xie
E-mail: jlxie@ustc.edu.cn
|
Cite this article:
Xinhang Xu(徐新航), Jinlin Xie(谢锦林), Jian Liu(刘健), and Wandong Liu(刘万东) Analysis of the anomalous Doppler effect from quantum theory to classical dynamics simulations 2025 Chin. Phys. B 34 120301
|
[1] Tamm I E 1959 Nobel Lectures 18 122 [2] Frank I M 1960 Science 131 702 [3] Ginzburg V L 1960 Sov. Phys. Usp. 2 874 [4] Shustin E G, Popovich P and Kharchenko I F 1971 Sov. Phys. JETP 59 657 [5] Nezlin M V 1976 Sov. Phys. Usp. 19 946 [6] Santini F, Barbato E and De Marco F 1984 Phys. Rev. Lett. 52 1300 [7] Kho T H and Lin A T 1988 Phys. Rev. A 38 2883 [8] Wang Y, Qin H and Liu J 2016 Phys. Plasmas 23 062505 [9] Guo Z, McDevitt C J and Tang X Z 2018 Phys. Plasmas 25 032504 [10] Liu C, Hirvijoki E and Fu G Y 2018 Phys. Rev. Lett. 120 265001 [11] Shi X, Lin X and Kaminer I 2018 Nat. Phys. 14 1001 [12] Filatov L V and Melnikov V F 2021 Geomagn. Aeron. 61 1183 [13] Artsimovich L A, Bobrovskii G A and Mirnov S V 1967 Sov. At. Energy 22 325 [14] Kadomtsev B B and Pogutse O P 1968 Sov. Phys. JETP 26 1146 [15] Spong D A, Heidbrink W W and Paz-Soldan C 2018 Phys. Rev. Lett. 120 155002 [16] Liu Y, Zhou T and Hu Y 2019 Nucl. Fusion 59 106024 [17] Gorozhanin D V, Ivanov B I and Khoruzhiy V M 1997 Waves excitation at anomalous Doppler effect for various electron beam energies, Dec 31, 1997, Japan, pp. 402 [18] Sajjad S 2007 Chin. Phys. Lett. 24 3195 [19] Castejon F and Eguilior S 2003 Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves (Madrid: Centro de Investigaciones Energeticas) p. 4 [20] Zhang Q, Zhang Y, Tang Q and Tang X Z 2024 arXiv:2409.15830 [physics.plasm-ph] [21] Ginzburg N S 1979 Radiophys. Quantum Electron. 22 323 [22] Coppi B, Pegoraro F, Pozzoli R and Rewoldt G 1976 Nucl. Fusion 16 309 [23] Dendy R O 1987 Phys. Fluids 30 2438 [24] Ginzburg V L 2005 Acoust. Phys. 51 11 [25] Frolov V P and Ginzburg V L 1986 Phys. Lett. A 116 423 [26] Ginzburg V L 1996 Phys. Usp. 39 973 [27] Arnaut H H and Barbosa G A 2000 Phys. Rev. Lett. 85 286 [28] Kiang D and Young K 2008 Am. J. Phys. 76 1012 [29] Wei E, Lan Z, Chen M L, Chen Y P and Sun S 2024 IEEE J. Multiscale Multiphys. Comput. Tech. 9 113 [30] Liu H, He X T, Chen S G and Zhang W Y 2004 arXiv:physics/0411183 [physics.plasm-ph] [31] Qian B L 1999 IEEE Trans. Plasma Sci. 27 1578 [32] Weyssow B 1990 J. Plasma Phys. 43 119 [33] Gogoberidze G and Machabeli G Z 2005 Mon. Not. R. Astron. Soc. 364 1363 [34] Roberts C S and Buchsbaum S J 1964 Phys. Rev. 135 A381 [35] Bourdier A and Gond S 2000 Phys. Rev. E 62 4189 [36] Nusinovich G S, Korol M and Jerby E 1999 Phys. Rev. E 59 2311 [37] Nusinovich G S, Latham P E and Dumbrajs O 1995 Phys. Rev. E 52 998 [38] Qian B L 2000 Phys. Plasmas 7 537 [39] Zhang R, Liu J, Qin H, Wang Y, He Y and Sun Y 2015 Phys. Plasmas 22 044501 [40] Liu J, Wang Y and Qin H 2016 Nucl. Fusion 56 064002 [41] Zhao Y, Bai J, Cao Y, Wu S, Ahedo E, Merino M and Tian B 2022 Chin. Phys. B 31 075203 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|