Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 118702    DOI: 10.1088/1674-1056/ade06a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of 3.1-THz radiation on pathological progression in Caenorhabditis elegans Alzheimer's disease model

Lei Wang(王磊)1,2,†, Meng Wang(王萌)3,†, Xumei Zhang(张绪梅)3,‡, and Mingxia He(何明霞)1,2,§
1 The Center for Terahertz Waves, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China;
2 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;
3 School of Public Health, Tianjin Medical University, Tianjin 300203, China
Abstract  Terahertz (THz) radiation, an emerging frequency band of the electromagnetic spectrum, has been widely applied across various fields. However, its ability to resonate with the energy levels of biomolecules has raised significant concerns regarding its biosafety. A growing body of research indicates that THz radiation can markedly influence the structure and function of proteins. Alzheimer’s disease (AD), a neurodegenerative disorder characterized by the abnormal aggregation of amyloid proteins, has been shown in prior studies to be modulated by THz radiation in terms of amyloid aggregation. Building on this, the present study utilized the CL4176 strain of Caenorhabditis elegans as an animal model for AD. Using a self-designed and constructed radiation system based on quantum cascade lasers, the study investigated changes in the pathological progression of AD under 3.1-THz electromagnetic radiation exposure. By evaluating lifespan, motility, feeding behavior, reactive oxygen species (ROS) levels, and aging markers in the Caenorhabditis elegans model, the study highlights the potential biological risks of 3.1-THz radiation for individuals with AD. These findings provide crucial experimental evidence to support the promotion and standardization of THz technology applications.
Keywords:  terahertz biological effects      Alzheimer's disease      vibrational analysis      biosafety  
Received:  29 March 2025      Revised:  19 May 2025      Accepted manuscript online:  04 June 2025
PACS:  87.50.-a (Effects of electromagnetic and acoustic fields on biological systems)  
  87.19.xr (Degenerative diseases (Alzheimer's, ALS, etc))  
  33.20.Tp (Vibrational analysis)  
  28.52.Nh (Safety)  
Corresponding Authors:  Xumei Zhang, Mingxia He     E-mail:  zhangxumei@tmu.edu.cn;hhmmxx@tju.edu.cn

Cite this article: 

Lei Wang(王磊), Meng Wang(王萌), Xumei Zhang(张绪梅), and Mingxia He(何明霞) Effect of 3.1-THz radiation on pathological progression in Caenorhabditis elegans Alzheimer's disease model 2025 Chin. Phys. B 34 118702

[1] World Health Organization 2021 https://www.who.int/publications/i/item/9789240033245
[2] LLivingston G, Huntley J, Sommerlad A, et al. 2020 The Lancet 396 413
[3] Deng J, Tao Q, Liu B, Luo Y, Zhu Y and Yue F 2024 Geriatric Heart Brain and Vessel Diseases 26 562
[4] Du Z, Li M, Ren J and Qu X 2021 Acc. Chem. Res. 54 2172
[5] Su Y and Chang P T 2001 Brain Research 893 287
[6] Johansen C 2000 Epidemiology 11 539
[7] Park R M, Schulte P A, Bowman J D, Walker J T, Bondy S C, Yost M G, Touchstone J A and Dosemeci M 2005 American Journal of Industrial Medicine 48 63
[8] Harmanci H, Emre M, Gurvit H, Bilgic B, Hanagasi H, Gurol E, Sahin H and Tinaz S 2003 Alzheimer Disease & Associated Disorders 17 139
[9] Park J, Kwon J H, Kim N and Song K 2018 Journal of Radiation Research 59 18
[10] Liu G 2018 Chin. Sci. Bull. 63 3864 (in Chinese)
[11] Wang P, Lou J, Fang G and Chang C 2022 IEEE Transactions on Microwave Theory and Techniques 70 5117
[12] Sun Y, Geng J, Fan Y, Li Y, Zhong Y, Cai J, Liu X, Wang S, Gong Y, Chang C, Yang Y and Fan C 2024 Advanced Science 11 2405436
[13] Zhong Y, Yu Y, Li Y, Yin J, Sun Y, Jiang R and Chang C 2025 PhotoniX 6 9
[14] Li Y, Chang C, Zhu Z, Sun L and Fan C 2021 J. Am. Chem. Soc. 143 4311
[15] Yuan Y, Lou J, Wu K, Yu Y, Li C, Peng W, Han Y, Li J and Chang C 2024 ACS Photonics 11 1473
[16] Wu K, Qi C, Zhu Z, Wang C, Song B and Chang C 2020 J. Phys. Chem. Lett. 11 7002
[17] Zhang C, Yuan Y, Wu K, Wang Y, Zhu S, Shi J, Wang L, Li Q, Zuo X, Fan C, Chang C and Li J 2022 Nano Lett. 22 468
[18] Li Y, Zhu Z, Sun L, Xiang Z, Chang C and Fan C 2022 ACS Nano 16 8419
[19] Liu X, Qiao Z, Chai Y, Zhu Z, Wu K, Ji W, Li D, Xiao Y, Mao L, Chang C, Wen Q, Song B and Shu Y 2021 Proc. Natl. Acad. Sci. USA 118 e2015685118
[20] Tan X, Zhong Y, Li R and Chang C 2022 Research 2022 0010
[21] Song Z, Sun Y, Liu P, Ruan H, He Y, Yin J, Xiao C, Ma J, Yu Y, Wang S, Gong Y, Lin Z W, Zhang Z, Chang C and Yang M 2024 Research 7 0535
[22] Yin J, Wu K, Yu Y, Zhong Y, Song Z, Chang C and Liu G 2024 ACS Nano 18 4796
[23] Yu Y, Wu K, Yang X, Long J and Chang C 2023 Research 6 0278
[24] Zhang J, He Y, Liang S, Liao X, Li T, Qiao Z, Chang C, Jia H and Chen X 2021 Nat. Commun. 12 2730
[25] Kawasaki T, Tsukiyama K and Irizawa A 2019 Sci. Rep. 9 10636
[26] Peng W, Zhu Z, Lou J, Chen K, Wu Y and Chang C 2023 eLight 3 18
[27] Wang L, Cheng Y, Wang W, Zhao J, Wang Y, Zhang X, Wang M, Shan T and He M 2023 International Journal of Molecular Sciences 24 5039
[28] Chen C, Yan Z, Ma Y and Ding H 2023 ACS Chem. Neurosci. 14 4128
[29] Jia X 2019 Jilin University
[30] Bekker H, Berendsen H J C, Dijkstra E J, Achterop S, Vondrumen R, van der Spoel D, Sijbers A, Keegstra H and Renardus M K R 1993 4th International Conference on Computational Physics (PC 92), August 24–28, 1992, Singapore, p. 252
[31] Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
[32] Lindahl E, Hess B and van der Spoel D 2001 J. Mol. Model. 7 306
[33] van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701
[34] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[35] Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts M R, Smith J C, Kasson P M, van der Spoel D, Hess B and Lindahl E 2013 Bioinformatics 29 845
[36] Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K E and Simmerling C 2015 J. Chem. Theory Comput. 11 3696
[37] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[38] Neese F 2012 WIREs Computational Molecular Science 2 73
[39] Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. 98 11623
[40] Weigend F and Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297
[41] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[42] Grimme S, Ehrlich S and Goerigk L 2011 J. Computat. Chem. 32 1456
[43] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[44] Lu T 2024 J. Chem. Phys. 161 082503
[45] Zhao J, He M, Dong L, Li S, Liu L, Bu S, Ouyang C, Wang P and Sun L 2019 Chin. Phys. B 28 048703
[46] Tamagno E, Guglielmotto M, Monteleone D and Tabaton M 2012 Neurotox Res. 22 208
[47] Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C and Collin F 2018 Redox Biology 14 450
[48] Terman A and Brunk U T 2004 The International Journal of Biochemistry & Cell Biology 36 1400
[49] Brunk U T and Terman A 2002 Free Radical Biology and Medicine 33 611
[1] Selective excitation of molecular mode in a mixture by femtosecond resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy
He Ping(贺平), Li Si-Ning(李思宁), Fan Rong-Wei(樊荣伟), Li Xiao-Hui(李晓晖), Xia Yuan-Qin(夏元钦), Yu Xin(于欣), and Chen De-Ying(陈德应) . Chin. Phys. B, 2012, 21(2): 027801.
[2] Dynamical entanglement for Fermi coupled stretching and bending modes
Hou Xi-Wen(侯喜文) and Cheng Chuan-Ming(成传明). Chin. Phys. B, 2009, 18(7): 2719-2723.
No Suggested Reading articles found!