| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Dynamically generating superflow in a bosonic ring via phase imprinting |
| Ke-Ji Chen(陈科技)1,† and Fan Wu(吴凡)2,‡ |
1 Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2 Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China |
|
|
|
|
Abstract Phase imprinting enables the dynamic generation of superflow in bosonic atoms, effectively overcoming traditional limitations such as vortex number constraints and heating effects. However, the mechanisms underlying superflow formation remain insufficiently understood. In this work, we reveal these mechanisms by studying the time evolution of the transferred total angular momentum and the quantized current throughout the phase imprinting process, achieved through numerically solving the time-dependent Schr?dinger and Gross-Pitaevskii equations. We demonstrate that the Bose gas dynamically acquires angular momentum through the density depletion induced by the phase imprinting potential, whereas quantized currents emerge from azimuthal phase slips accompanied by complete density depletions. Regarding the impact of system parameters, such as interactions, we find that interactions hinder superflow formation, as the azimuthal density distribution becomes less susceptible to the phase imprinting potential. Our findings offer microscopic insights into the dynamic development of superflow during the phase imprinting process and provide valuable guidance for ongoing experimental efforts.
|
Received: 31 March 2025
Revised: 06 May 2025
Accepted manuscript online: 09 May 2025
|
|
PACS:
|
67.25.dg
|
(Transport, hydrodynamics, and superflow)
|
| |
73.23.Ra
|
(Persistent currents)
|
| |
67.85.-d
|
(Ultracold gases, trapped gases)
|
| |
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
| Fund: We acknowledge fruitful discussion with professor Wei Yi. Project supported by the National Natural Science Foundation of China (Grants Nos. 12104406 and 12204105), the Natural Science Foundation Zhejiang Province, China (Grant No. ZCLMS25A0401), the Startup Grant of Zhejiang Sci-Tech University (Grant No. 21062338-Y), and the Natural Science Foundation of Fujian Province, China (Grant No. 2022J05116). |
Corresponding Authors:
Ke-Ji Chen, Fan Wu
E-mail: chenkeji2010@gmail.com;t21060@fzu.edu.cn
|
Cite this article:
Ke-Ji Chen(陈科技) and Fan Wu(吴凡) Dynamically generating superflow in a bosonic ring via phase imprinting 2025 Chin. Phys. B 34 106701
|
[1] Tinkham M 2004 Introduction to Superconductivity (Dover Publications, Inc.), Mineola [2] Dalibard J, Gerbier F, Juzeliunas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523 [3] Goldman N, Juzeliunas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401 [4] Ramanathan A, Wright K C, Muniz S R, Zelan M, Hill W T, Lobb C J, Helmerson K, Phillips W D and Campbell G K 2011 Phys. Rev. Lett. 106 130401 [5] Ryu C, Blackburn PW, Blinova A A and Boshier M G 2013 Phys. Rev. Lett. 111 205301 [6] Eckel S, Lee J G, Jendrzejewski F, Murray N, Clark C W, Lobb C J, Phillips W D, Edwards M and Campbell G K 2014 Nature 506 200 [7] Ryu C, Samson E C and Boshier M G 2020 Nat. Commun. 11 3338 [8] Kiehn H, Singh V P and Mathey L 2022 Phys. Rev. Res. 4 033024 [9] Amico L, Boshier M, Birkl G, et al. 2021 AVS Quantum Science 3 039201 [10] Amico L, Anderson D, Boshier M, Brantut J P, Kwek L C, Minguzzi A and von Klitzing W 2022 Rev. Mod. Phys. 94 041001 [11] Ryu C, Andersen M F, Cladé P, Natarajan V, Helmerson K and Phillips W D 2007 Phys. Rev. Lett. 99 260401 [12] Moulder S, Beattie S, Smith R P, Tammuz N and Hadzibabic Z 2012 Phys. Rev. A 86 013629 [13] Beattie S, Moulder S, Fletcher R J and Hadzibabic Z 2013 Phys. Rev. Lett. 110 025301 [14] Wright K C, Blakestad R B, Lobb C J, Phillips W D and Campbell G K 2013 Phys. Rev. Lett. 110 025302 [15] Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmerson K and Phillips W D 2006 Phys. Rev. Lett. 97 170406 [16] Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Huang P, Yip S K, Kawaguchi Y and Lin Y J 2018 Phys. Rev. Lett. 121 113204 [17] Zhang D, Gao T, Zou P, Kong L, Li R, Shen X, Chen X L, Peng S G, Zhan M, Pu H and Jiang K 2019 Phys. Rev. Lett. 122 110402 [18] DeMarco M and Pu H 2015 Phys. Rev. A 91 033630 [19] Sun K, Qu C and Zhang C 2015 Phys. Rev. A 91 063627 [20] Qu C, Sun K and Zhang C 2015 Phys. Rev. A 91 053630 [21] Chen L, Pu H and Zhang Y 2016 Phys. Rev. A 93 013629 [22] Chen X L, Peng S G, Zou P, Liu X J and Hu H 2020 Phys. Rev. Res. 2 033152 [23] Chen K J, Wu F, Hu J and He L 2020 Phys. Rev. A 102 013316 [24] Chen L, Zhang Y and Pu H 2020 Phys. Rev. Lett. 125 195303 [25] Duan Y, Bidasyuk Y M and Surzhykov A 2020 Phys. Rev. A 102 063328 [26] Chen K J, Wu F, Peng S G, Yi W and He L 2020 Phys. Rev. Lett. 125 260407 [27] Wang L L, Ji A C, Sun Q and Li J 2021 Phys. Rev. Lett. 126 193401 [28] Chen K J, Wu F, He L and Yi W 2022 Phys. Rev. Res. 4 033023 [29] Han Y, Peng S G, Chen K J and Yi W 2022 Phys. Rev. A 106 043302 [30] Peng S G, Jiang K, Chen X L, Chen K J, Zou P and He L 2022 AAPPS Bulletin 32 36 [31] Cui X, Lian B, Ho T L, Lev B L and Zhai H 2013 Phys. Rev. A 88 011601 [32] Kumar A, Dubessy R, Badr T, De Rossi C, de Goër de Herve M, Longchambon L and Perrin H 2018 Phys. Rev. A 97 043615 [33] Cai Y, Allman D G, Sabharwal P and Wright K C 2022 Phys. Rev. Lett. 128 150401 [34] Del Pace G, Xhani K, Muzi Falconi A, Fedrizzi M, Grani N, Hernandez Rajkov D, Inguscio M, Scazza F, Kwon W J and Roati G 2022 Phys. Rev. X 12 041037 [35] Pezzè L, Xhani K, Daix C, Grani N, Donelli B, Scazza F, Hernandez- Rajkov D, Kwon W J, Del Pace G and Roati G 2024 Nat. Commun. 15 4831 [36] Eckel S, Jendrzejewski F, Kumar A, Lobb C J and Campbell G K 2014 Phys. Rev. X 4 031052 [37] Corman L, Chomaz L, Bienaimé T, Desbuquois R, Weitenberg C, Nascimbène S, Dalibard J and Beugnon J 2014 Phys. Rev. Lett. 113 135302 [38] Mathew R, Kumar A, Eckel S, Jendrzejewski F, Campbell G K, Edwards M and Tiesinga E 2015 Phys. Rev. A 92 033602 [39] Xhani K, Del Pace G, Scazza F and Roati G 2023 Atoms 11 109 [40] Chen K J, Yi W and Wu F 2025 Phys. Rev. Res. 7 013022 [41] Xhani K, Barresi A, Tylutki M, Wlazlowski G and Magierski P 2025 Phys. Rev. Res. 7 013225 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|