Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 108701    DOI: 10.1088/1674-1056/adce9b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mechanical activation of DNA transport across single-walled carbon nanotubes

Junjie Gao(高俊杰), Yichao Wu(吴逸超), Siqi Yu(俞斯棋), Xiaoyan Zhou(周晓艳)†, and Hangjun Lu(陆杭军)‡
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  We employed molecular dynamics simulations to investigate the directed transport of a double-stranded oligonucleotide (dsDNA) through a single-walled carbon nanotube (SWNT) powered by external mechanical vibrations. It is thermodynamically favorable for dsDNA to adsorb inside the SWNT, and its transport through the nanotube is challenging due to the high energy barrier. However, we demonstrate that mechanical vibrations at specific frequencies can effectively drive the dsDNA through the nanotube based on a ratchet effect. The system is driven away from thermal equilibrium, and the spatial inversion symmetry is broken by mechanical vibrations. This study provides valuable insights into the mechanisms of mechanically activated DNA transport and highlights the potential of using SWNTs as nanoscale conduits for dsDNA delivery in nanobiotechnology and biomedicine.
Keywords:  double-stranded oligonucleotide (dsDNA)      single-walled carbon nanotube (SWNT)      mechanical vibrations      ratchet effect  
Received:  19 February 2025      Revised:  12 April 2025      Accepted manuscript online:  21 April 2025
PACS:  87.14.gk (DNA)  
  87.15.ap (Molecular dynamics simulation)  
  87.85.Rs (Nanotechnologies-applications)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875237).
Corresponding Authors:  Xiaoyan Zhou, Hangjun Lu     E-mail:  zxylu@zjnu.cn;zjlhjun@zjnu.cn

Cite this article: 

Junjie Gao(高俊杰), Yichao Wu(吴逸超), Siqi Yu(俞斯棋), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军) Mechanical activation of DNA transport across single-walled carbon nanotubes 2025 Chin. Phys. B 34 108701

[1] Hu R, Zhu R, Wei G, Wang Z, Gu Z Y, Wanunu M and Zhao Q 2023 Adv. Mater. 35 2211399
[2] Kaneko T, Okada T and Hatakeyama R 2007 Con. Plas. Phys. 47 57
[3] Xie Y H, Kong Y, Soh A K and Gao H J 2007 J. Chem. Phys. 127 225101
[4] Dorey A and Howorka S 2024 Nat. Chem. 16 314
[5] Iqbal S M, Akin D and Bashir R 2007 Nat. Nanotechnol. 2 243
[6] Haque F, Li J, Wu H C, Liang X J and Guo P 2013 Nano Today 8 56
[7] Ritmejeris J, Chen X and Dekker C 2024 Nat. Rev. Methods Primers 3 303
[8] Kumar H, Lansac Y, Glaser M A and Maiti P K 2011 Soft Matter 7 5898
[9] Fyta M, Melchionna S and Succi S 2011 J. Polym. Sci. Part B: Polym. Phys. 49 985
[10] Lin X, Chen H, Wu G, Zhao J, Zhang Y, Sha J and Si W 2024 J. Phys. Chem. Lett. 15 5120
[11] Xiu P, Zhou B, Qi W, Lu H, Tu Y and Fang H 2009 J. Am. Chem. Soc. 131 2840
[12] Gao H J, Kong Y, Cui D X and Ozkan C S 2003 Nano Lett. 3 471
[13] Yeh I C and Hummer G 2004 Proc. Natl. Acad. Sci. USA 101 12177
[14] Li J, Zhang Y, Yang J, Bi K, Ni Z, Li D and Chen Y 2013 Phys. Rev. E 87 062707
[15] Mendes B B, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf- Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A and Conde J 2022 Nat. Rev. Methods Primers 2 1
[16] Wanunu M 2012 Phys. Life Rev. 9 125
[17] Li J, Gong X, Lu H, Li D, Fang H and Zhou R 2007 Proc. Natl. Acad. Sci. USA 104 3687
[18] Lu H, Li J, Gong X, Wan R, Zeng L and Fang H 2008 Phys. Rev. B 77 174115
[19] Song C and Corry B 2009 J. Phys. Chem. B 113 7642
[20] Joseph S, Mashl R J, Jakobsson E and Aluru N R 2003 Nano Lett. 3 1399
[21] Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli L R, Allen F I, Shnyrova A V, Cho K R, Munoz D,Wang Y M, Grigoropoulos C P, Ajo-Franklin C M, Frolov V A and Noy A 2014 Nature 514 612
[22] Liu H, He J, Tang J, Liu H, Pang P, Cao D, Krstic P, Joseph S, Lindsay S and Nuckolls C 2010 Science 327 64
[23] Luan B, Zhou B, Huynh T and Zhou R 2014 Nanoscale 6 11479
[24] Arai N, Koishi T and Ebisuzaki T 2021 ACS Nano 15 2481
[25] Oyarzua E, Walther J H, Megaridis C M, Koumoutsakos P and Zambrano H A 2017 ACS Nano 11 9997
[26] Leng J, Ying T, Guo Z, Zhang Y, Chang T, Guo W and Gao H 2022 Carbon 191 175
[27] Liu C and Li Z 2010 Phys. Rev. Lett. 105 174501
[28] Ostler D, Kannam S K, Daivis P J, Frascoli F and Todd B D 2017 J. Phys. Chem. C 121 28158
[29] Ding C, Zhao Y and Su J 2021 Langmuir 37 12318
[30] Zhang Q L, Yang R Y, Wang C L and Hu J 2022 Phy. Rev. Fluids 7 114202
[31] Ostler D, Kannam S K, Frascoli F, Daivis P J and Todd B D 2019 Langmuir 35 14742
[32] Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 13275
[33] Marcotte A, Mouterde T, Niguès A, Siria A and Bocquet L 2020 Nature Materials 19 1057
[34] Zhao J, Huang J Q, Wei F and Zhu J 2010 Nano Lett. 10 4309
[35] Kou J, Lu H, Wu F, Fan J and Yao J 2014 Nano Lett. 14 4931
[36] Zhou X Y, Kou J L, Nie X C, Wu F M, Liu Y and Lu H J 2015 Chin. Phys. B 24 074702
[37] Duan W H and Wang Q 2010 ACS Nano 4 2338
[38] Zhang Q L, Jiang W Z, Liu J, Miao R D and Sheng N 2013 Phys. Rev. Lett. 110 254501
[39] Feng J W, Ding H M, Ren C L and Ma Y Q 2014 Nanoscale 6 13606
[40] Qiu H, Shen R and Guo W 2011 Nano Res. 4 284
[41] Wei M, Xu C, Zhou X and Lu H 2023 J. Mol. Liq. 390 122827
[42] Zhou X, Wu F, Liu Y, Kou J and Lu H 2015 Phys. Rev. E 92 053017
[43] Kang Y, Wang Q, Liu Y C, Wu T, Chen Q and Guan W J 2008 J. Phys. Chem. B 112 4801
[44] Lu H J, Gong X J, Wang C L, Fang H P and Wang R Z 2008 Chin. Phys. Lett. 25 1145
[45] Zhou X and Zhu F 2018 Phys. Rev. E 98 032410
[1] Multiple reversals of vortex ratchet effects in a superconducting strip with inclined dynamic pinning landscape
An He(何安) and Cun Xue(薛存). Chin. Phys. B, 2020, 29(12): 127401.
No Suggested Reading articles found!