Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 125204    DOI: 10.1088/1674-1056/ad8070
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Differences in the acoustic characteristics of DC bias alternating arcs in argon, helium, and nitrogen

Yutai Li(李雨泰)1,3,†, Qinghao Wen(文清皓)1, Yangyang Fu(付洋洋)3, Xiaobing Zou(邹晓兵)3, Handong Li(黎晗东)4, Zhigang Liu(刘志刚)5, Haiyun Luo(罗海云)3, Dun Qian(钱盾)6, Zhe Chen(陈喆)2,3,‡, and Xinxin Wang(王新新)3
1 Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, Chongqing University, Chongqing 400044, China;
2 China Huaneng Group Co., Ltd., Beijing 100031, China;
3 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
4 China Three Gorges Renewables (Group) Co., Ltd., Beijing 101199, China;
5 School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
6 Electric Power Research Institute, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China
Abstract  The acoustic effects of gas discharge plasma have received much attention. Previous studies have shown that cold plasma and thermal plasma have different principles of sound generation. In this paper, the differences in the acoustic characteristics of DC bias alternating arc plasma (thermal plasma) in different gas environments (argon, helium, and nitrogen) are investigated by combining experiments and simulations. Many processes in industrial machining involve this arc plasma. It was found that the acoustic characteristics of the arcs of these three gases are significantly different. The two key parameters, electrical and thermal conductivity of the gas, determine the acoustic characteristics of the arc by influencing the electric power of the arc and the heat dissipation through the anode. At the same drive current, the nitrogen arc has the largest voltage drop and the helium arc has the highest electroacoustic conversion efficiency. This results in the acoustic pressure amplitude being helium, nitrogen, and argon in descending order. The research contributes to a deeper understanding of the vocalization mechanism of arc plasma and provides theoretical guidance on gas selection for arc acoustic wave applications.
Keywords:  arc discharge      gas discharge and plasma      arc acoustic wave      acoustic characteristics  
Received:  19 July 2024      Revised:  25 September 2024      Accepted manuscript online:  27 September 2024
PACS:  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.80.Tn (Other gas discharges)  
  52.25.Kn (Thermodynamics of plasmas)  
  52.77.Fv (High-pressure, high-current plasmas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51877118 and 52077117).
Corresponding Authors:  Yutai Li, Zhe Chen     E-mail:  liyt@cqu.edu.cn;287195465@qq.com

Cite this article: 

Yutai Li(李雨泰), Qinghao Wen(文清皓), Yangyang Fu(付洋洋), Xiaobing Zou(邹晓兵), Handong Li(黎晗东), Zhigang Liu(刘志刚), Haiyun Luo(罗海云), Dun Qian(钱盾), Zhe Chen(陈喆), and Xinxin Wang(王新新) Differences in the acoustic characteristics of DC bias alternating arcs in argon, helium, and nitrogen 2024 Chin. Phys. B 33 125204

[1] Chen Z, et al. 2019 IEEE Trans. Plasma Sci. 47 4136
[2] Aleksandar Jovic 2014 Ph. D. thesis (Sweden: Luleå University of Technology)
[3] Klein S 1954 Acustica 4 77
[4] Yvonne S, et al. 2011 IEEE Trans. Plasma Sci. 39 2146
[5] Naidis G V 2012 Plasma Sources Sci. Technol. 21 025009
[6] Eugene A 1961 J. Acoust. Soc. Am. 33 1708
[7] Li H, et al. 2021 Phys. Plasmas 28 073502
[8] Severinsen D and Gupta G S 2013 Proceedings of the World Congress on Engineering 2013
[9] Sagar S, et al. 2014 International Journal of Scientific & Engineering Research 5 572
[10] Fitaire M and Mantei T D 1972 Phys. Fluids 15 464
[11] Sforzini M, et al. 1975 IEEE Transactions on Power Apparatus and System 94 591
[12] Li Y, et al. 2021 Phys. Plasmas 28 073510
[13] Cunha MD, et al. 2023 J. Phys. D: Appl. Phys. 56 395204
[14] Li Y, et al. 2022 Plasma Sources Science & Technology 31 045027
[15] Liu Z, et al. 2023 J. Appl. Phys. 134 233301
[16] Kuwahara T and Asaka Y 2024 J. Magn. Magn. Mater. 589 171572
[17] Xue W, Kusumoto K and Nezu K 2003 Science and Technology of Welding and Joining 8 443
[18] Roca A S, et al. 2009 Science and Technology of Welding and Joining 14 117
[19] Macias E J, et al. 2010 Science and Technology of Welding and Joining 15 26
[20] Pal K and Pal S K 2011 Materials and Manufacturing Processes 26 684
[21] Strekalov M L 2024 Chem. Phys. Impact 8 100444
[22] Michael S M and Marshall M 1987 J. Acous. Soc. Am. 81 1972
[23] Chen Z, et al. 2020 Phys. Plasma 27 023509
[24] Hsu K C, Etemadi K and Pfender E 1983 J. Appl. Phys. 54 1293
[25] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag)
[26] Hsu K C 1982 Ph. D. thesis (University of Minnesota)
[27] Evans D L and Tankin R S 1967 Phys. Fluids 10 1137
[28] Zheng B, et al. 2023 Chin. Phys. B 32 095203
[29] Chen J, et al. 2022 Chin. Phys. B 31 065205
[1] Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
Yang Kang(康杨), Ning Li(李宁), Xiao-Long Huang(黄孝龙), and Chun-Sheng Weng(翁春生). Chin. Phys. B, 2022, 31(10): 104701.
[2] Acoustic characteristics of pulse detonation engine with ellipsoidal reflector
Yang Kang(康杨), Ning Li(李宁), Chun-Sheng Weng(翁春生), Chuan-Wei Wang(王传位). Chin. Phys. B, 2018, 27(10): 104703.
[3] Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid
Liu Xiao-Bo(刘晓波), Zhang Jian-Run(张建润), and Li Pu(李普) . Chin. Phys. B, 2012, 21(5): 054301.
[4] Morphologies and microstructures of carbon nanotubes prepared by self-sustained arc discharging
Tang Dong-Sheng (唐东升), Zhou Wei-Ya (周维亚), Ci Li-Jie (慈立杰), Yan Xiao-Qin (闫小琴), Yuan Hua-Jun (袁华军), Zhou Zhen-Ping (周振平), Liang Ying-Xin (梁迎新), Liu Dong-Fang (刘东方), Liu Wei (刘维). Chin. Phys. B, 2002, 11(5): 496-501.
No Suggested Reading articles found!