Special Issue:
SPECIAL TOPIC — Quantum computing and quantum sensing
|
SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
A quantum-enhanced magnetometer using a single high-spin nucleus in silicon |
Tao Xin(辛涛)1,2,†, Ke Zhang(张科)3,‡, and Jun Li(李俊)4,5,1,§ |
1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 2 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 3 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany; 4 Institute of Quantum Precision Measurement, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China; 5 College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract Quantum enhanced metrology has the potential to go beyond the standard quantum limit and eventually to the ultimate Heisenberg bound. In particular, quantum probes prepared in nonclassical coherent states have recently been recognized as a useful resource for metrology. Hence, there has been considerable interest in constructing magnetic quantum sensors that combine high resolution and high sensitivity. Here, we explore a nanoscale magnetometer with quantum-enhanced sensitivity, based on $^{123}$Sb ($I=7/2$) nuclear spin doped in silicon, that takes advantage of techniques of spin-squeezing and coherent control. With the optimal squeezed initial state, the magnetic field sensitivity may be expected to approach 6 aT$\cdot $Hz$^{-1/2}\cdot$cm$^{-3/2}$ and 603 nT$\cdot $Hz$^{-1/2}$ at the single-spin level. This magnetic sensor may provide a novel sensitive and high-resolution route to microscopic mapping of magnetic fields as well as other applications.
|
Received: 07 April 2024
Revised: 17 June 2024
Accepted manuscript online: 21 June 2024
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 1212200199, 12122506, 12004165, 12275117, and 12204230), Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2021B1515020070 and 2022B1515020074), Guangdong Provincial Key Laboratory (Grant No. 2019B121203002), and Shen-zhen Science and Technology Program (Grant Nos. KQTD20200820113010023, RCBS20200714114820298, and RCYX20200714114522109). |
Corresponding Authors:
Tao Xin, Ke Zhang, Jun Li
E-mail: xint@sustech.edu.cn;kezhang@uni-mainz.de;lijunquantum@szu.edu.cn
|
Cite this article:
Tao Xin(辛涛), Ke Zhang(张科), and Jun Li(李俊) A quantum-enhanced magnetometer using a single high-spin nucleus in silicon 2024 Chin. Phys. B 33 090302
|
[1] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [2] Budker D and Kimball D F J 2013 Optical Magnetometry (Cambridge University Press) [3] Safronova M S, Budker D, DeMille D, Kimball D F J, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008 [4] Casola F, van der Sar T and Yacoby A 2018 Nat. Rev. Mater. 3 17088 [5] Boto E, Meyer S S, Shah V, Alem O, Knappe S, Kruger P, Fromhold T M, Lim M, Glover P M, Morris P G, Bowtell R, Barnes G R and Brookes M J 2017 Neuroimage 149 404 [6] Harel E, Schröder L and Xu S 2008 Annu. Rev. Anal. Chem. 1 133 [7] Czap G, Wagner P J, Xue F, Gu L, Li J, Yao J, Wu R and Ho W 2019 Science 364 670 [8] Clarke J and Braginski A I 2004 The SQUID Handbook (Wiley-VCH, Weinheim) [9] Budker D and Romalis M 2007 Nat. Phys. 3 227 [10] Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V and Polzik E S 2010 Phys. Rev. Lett. 104 133601 [11] Muessel W, Strobel H, Linnemann D, Hume D B and Oberthaler M K 2014 Phys. Rev. Lett. 113 103004 [12] Ruster T, Kaufmann H, Luda M A, Kaushal V, Schmiegelow C T, Schmidt-Kaler F and Poschinger U G 2017 Phys. Rev. X 7 031050 [13] Bassett L C, Alkauskas A, Exarhos A L and Fu K M C 2019 Nanophotonics 8 1867 [14] Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F and Wrachtrup J 2008 Nature 455 648 [15] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810 [16] Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Anal. Chem. 65 83 [17] Liu Y X, Ajoy A and Cappellaro P 2019 Phys. Rev. Lett. 122 100501 [18] Chen M, Meng C, Zhang Q, Duan C, Shi F and Du J 2018 Natl. Sci. Rev. 5 346 [19] Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M and Walsworth R L 2020 Rev. Mod. Phys. 92 015004 [20] Baumgart I, Cai J M, Retzker A, Plenio M B and Wunderlich C 2016 Phys. Rev. Lett. 116 240801 [21] Dietsche E K, Larrouy A, Haroche S, Raimond J M, Brune M and Gleyzes S 2019 Nat. Phys. 15 326 [22] Mamin H J, Sherwood M H, Kim M, Rettner C T, Ohno K, Awschalom D D and Rugar D 2014 Phys. Rev. Lett. 113 030803 [23] Cooper A, Sun W K C, Jaskula J C and Cappellaro P 2019 Phys. Rev. Appl. 12 044047 [24] Asaad S, Mourik V, Joecker B, Johnson M A I, Baczewski A D, Firgau H R, Madzik M T, Schmitt V, Pla J J, Hudson F E, Itoh K M, McCallum J C, Dzurak A S, Laucht A and Morello A 2020 Nature 579 205 [25] Morello A, Pla J J, Bertet P and Jamieson D N 2020 Adv. Quantum Technol. 3 2000005 [26] Auccaise R, Araujo-Ferreira A G, Sarthour R S, Oliveira I S, Bonagamba T J and Roditi I 2015 Phys. Rev. Lett. 114 043604 [27] Korkmaz Y A and Bulutay C 2016 Phys. Rev. A 93 013812 [28] Birrittella R J, Alsing P M and Gerry C C 2021 Phys. Rev. A 3 014701 [29] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222 [30] Pezzè L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005 [31] Haiduke R L A and da Silva A B F 2006 J. Chem. Phys. 125 064301 [32] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford University Press) [33] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138 [34] Bian Z W and Lai X B 2013 Int. J. Theor. Phys. 52 3922 [35] Gilmore R 1974 J. Math. Phys. 15 2090 [36] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649 [37] Xie T, Zhao Z, Kong X, Ma W, Wang M, Ye X, Yu P, Yang Z, Xu S, Wang P, et al. 2021 Sci. Adv. 7 eabg9204 [38] Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M and Walsworth R L 2020 Rev. Mod. Phys. 92 015004 [39] Muhonen J T, Dehollain J P, Laucht A, Hudson F E, Kalra R, Sekiguchi T, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, et al. 2014 Nat. Nanotechnol. 9 986 [40] Liu W, Wu Y, Duan C K, Rong X and Du J 2021 Phys. Rev. Lett. 126 170506 [41] Yu X, Wilhelm B, Holmes D, Vaartjes A, Schwienbacher D, Nurizzo M, Kringhøj A, van Blankenstein M R, Jakob A M, Gupta P, et al. 2024 arXiv:2405.15494[quant-ph] [42] McCallum J, Johnson B and Botzem T 2021 Appl. Phys. Rev. 8 031314 [43] Meiboom S and Gill D 1958 Rev. Sci. Instrum. 29 688 [44] Khodjasteh K and Lidar D A 2007 Phys. Rev. A 75 062310 [45] Mansfield P 1971 J. Phys. C: Solid State Phys. 4 1444 [46] Nöbauer T, Angerer A, Bartels B, Trupke M, Rotter S, Schmiedmayer J, Mintert F and Majer J 2015 Phys. Rev. Lett. 115 190801 [47] Wang Z Y, Lang J E, Schmitt S, Lang J, Casanova J, McGuinness L, Monteiro T S, Jelezko F and Plenio M B 2019 Phys. Rev. Lett. 122 200403 [48] Li J, Yang X, Peng X and Sun C P 2017 Phys. Rev. Lett. 118 150503 [49] Koczor B, Endo S, Jones T, Matsuzaki Y and Benjamin S C 2020 New J. Phys. 22 083038 [50] Yang X, Thompson J, Wu Z, Gu M, Peng X and Du J 2020 npj Quantum Inf. 6 62 [51] Meyer J J, Borregaard J and Eisert J 2021 npj Quantum Inf. 7 89 [52] Affolderbach C, Stähler M, Knappe S and Wynands R 2002 Appl. Phys. B 75 605 [53] Mitchell M W and Palacios Alvarez S 2020 Rev. Mod. Phys. 92 021001 [54] Fu K M C, Iwata G Z, Wickenbrock A and Budker D 2020 AVS Quantum Sci. 2 044702 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|