Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060702    DOI: 10.1088/1674-1056/ad3dd0
RAPID COMMUNICATION Prev   Next  

Controlling the dynamic behavior of decentralized cluster through centralized approaches

Daming Yuan(袁大明)1,†, Peilong Wang(王培龙)1,†, Peng Wang(王鹏)2, Xingyu Ma(马星宇)1, Chuyun Wang(汪楚云)2, Jing Wang(王璟)3, Huaicheng Chen(陈怀城)3, Gao Wang(王高)3,4,‡, and Fangfu Ye(叶方富)1,3,§
1 School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China;
2 Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325035, China;
3 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.
Keywords:  self-organizing system      centralized control      dynamics regulation  
Received:  06 February 2024      Revised:  13 March 2024      Accepted manuscript online: 
PACS:  07.05.Dz (Control systems)  
  45.70.Qj (Pattern formation)  
  45.40.Ln (Robotics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174041), China Postdoctoral Science Foundation (CPSF) (Grant No. 2022M723118), and the seed grants from the Wenzhou Institute, University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002).
Corresponding Authors:  Gao Wang, Fangfu Ye     E-mail:  wanggao@ucas.ac.cn;ye@iphy.ac.cn

Cite this article: 

Daming Yuan(袁大明), Peilong Wang(王培龙), Peng Wang(王鹏), Xingyu Ma(马星宇), Chuyun Wang(汪楚云), Jing Wang(王璟), Huaicheng Chen(陈怀城), Gao Wang(王高), and Fangfu Ye(叶方富) Controlling the dynamic behavior of decentralized cluster through centralized approaches 2024 Chin. Phys. B 33 060702

[1] Nagel S R 2017 Rev. Mod. Phys. 89 025002
[2] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[3] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143
[4] Narayan V, Ramaswamy S and Menon N 2007 Science 317 105
[5] Kudrolli A, Lumay G, Volfson D and Tsimring L S 2008 Phys. Rev. Lett. 100 058001
[6] Aranson I S and Tsimring L S 2006 Phys. Rev. E 74 031915
[7] Wu C, Dai J, Li X, Gao L, Wang J, Liu J, Zheng J, Zhan X, Chen J, Cheng X, Yang M and Tang J 2021 Nat. Nanotechnol. 16 288
[8] Jiang H-R, Yoshinaga N and Sano M 2010 Phys. Rev. Lett. 105 268302
[9] Xie H, Sun M, Fan X, Lin Z, Chen W, Wang L, Dong L and He Q 2019 Sci. Robot. 4 eaav8006
[10] Lavergne F A, Wendehenne H, Bäuerle T and Bechinger C 2019 Science 364 70
[11] Dai Q and Nelson A 2010 Chem. Soc. Rev. 39 4057
[12] Van Blaaderen A, Dijkstra M, Van Roij R, Imhof A, Kamp M, Kwaadgras B W, Vissers T and Liu B 2013 Eur. Phys. J. Spec. Top. 222 2895
[13] Bredeche N, Haasdijk E and Prieto A 2018 Front. Robot. AI 5 12
[14] Wang G, Phan T V, Li S, Wombacher M, Qu J, Peng Y, Chen G, Goldman D I, Levin S A, Austin R H and Liu L 2021 Phys. Rev. Lett. 126 108002
[15] Wang G, Phan T V, Li S, Wang J, Peng Y, Chen G, Qu J, Goldman D I, Levin S A, Pienta K, Amend S, Austin R H and Liu L 2022 Proc. Natl. Acad. Sci. USA 119 e2120019119
[16] Sun G, Zhou R, Ma Z, Li Y, Groß R, Chen Z and Zhao S 2023 Nat. Commun. 14 3476
[17] Liu Y, Wang L, Huang H, Liu M and Xu C 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2669-2674
[18] Saska M, Kasl Z and Přeucil L 2014 IFAC Proc. Vol. 47 1228
[19] Ducatelle F, Di Caro G A, Förster A, Bonani M, Dorigo M, Magnenat S, Mondada F, O’Grady R, Pinciroli C, Rétornaz P, Trianni V and Gambardella L M 2014 Swarm Intell. 8 1
[20] Hu J, Niu H, Carrasco J, Lennox B and Arvin F 2020 IEEE Trans. Veh. Technol. 69 14413
[21] Dorigo M, Theraulaz G and Trianni V 2021 Proc. IEEE 109 1152
[22] Tan Y and Zheng Z 2013 Def. Technol. 9 18
[23] Şahin E 2005 Swarm Robotics (Lecture Notes in Computer Science) Vol. 3342, pp. 10-20
[24] Lerman K, Martinoli A and Galstyan A 2005 Swarm Robotics (Lecture Notes in Computer Science) Vol. 3342, pp. 143-52
[25] Brambilla M, Ferrante E, Birattari M and Dorigo M 2013 Swarm Intell. 7 1
[26] Berlinger F, Gauci M and Nagpal R 2021 Sci. Robot. 6 eabd8668
[27] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[28] Rubenstein M, Cornejo A and Nagpal R 2014 Science 345 795
[29] Li S, Batra R, Brown D, Chang H D, Ranganathan N, Hoberman C, Rus D and Lipson H 2019 Nature 567 361
[30] Scholz C, Engel M and Pöschel T 2018 Nat. Commun. 9 931
[31] Mathews N, Christensen A L, O’Grady R, Mondada F and Dorigo M 2017 Nat. Commun. 8 439
[32] Krieger M J B and Billeter J B 2000 Robot. Auton. Syst. 30 65
[33] Garattoni L and Birattari M 2018 Sci. Robot. 3 eaat0430
  • 1. SI Video 1.mp4(9038KB)

  • 2. SI Video 2.mp4(4366KB)

  • 3. SI Video 3.mp4(9658KB)

[1] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[2] Thermal-contact capacity of one-dimensional attractive Gaudin—Yang model
Xiao-Min Zhang(张小敏), Song Cheng(程颂), and Yang-Yang Chen(陈洋洋). Chin. Phys. B, 2024, 33(4): 040203.
[3] Observer-based dynamic event-triggered control for distributed parameter systems over mobile sensor-plus-actuator networks
Wenying Mu(穆文英), Bo Zhuang(庄波), and Fang Qiu(邱芳). Chin. Phys. B, 2024, 33(4): 040204.
[4] Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
Yayong Wu(吴亚勇), Xinwei Wang(王欣伟), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2024, 33(4): 040205.
[5] Disturbance observer-based fuzzy fault-tolerant control for high-speed trains with multiple disturbances
Qian-Ling Wang(王千龄), Cai-Qing Ma(马彩青), and Xue Lin(林雪). Chin. Phys. B, 2023, 32(10): 100701.
[6] Distributed dynamic event-based finite-time dissipative synchronization control for semi-Markov switched fuzzy cyber-physical systems against random packet losses
Xiru Wu(伍锡如), Yuchong Zhang(张煜翀), Tiantian Zhang(张畑畑), and Binlei Zhang(张斌磊). Chin. Phys. B, 2023, 32(10): 100506.
[7] Fixed-time group consensus of second-order multi-agent systems based on event-triggered control
Xiaoshuai Wu(武肖帅), Fenglan Sun(孙凤兰), Wei Zhu(朱伟), and Jürgen Kurths. Chin. Phys. B, 2023, 32(7): 070701.
[8] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[9] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[10] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[11] Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network
Zhen Xu(徐振), Xin-Zhi Liu(刘新芝), Qing-Wei Chen(陈庆伟), Zi-Xing Wu(吴梓杏). Chin. Phys. B, 2020, 29(5): 050701.
[12] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[13] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[14] Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target
Zhan-Peng Xu(许展鹏), Xiao-Qian Chen(陈小前), Yi-Yong Huang(黄奕勇), Yu-Zhu Bai(白玉铸), Wen Yao(姚雯). Chin. Phys. B, 2018, 27(9): 090501.
[15] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
No Suggested Reading articles found!