Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030305    DOI: 10.1088/1674-1056/ad1748
GENERAL Prev   Next  

Complementary monogamy and polygamy properties among multipartite systems

Tao Li(李陶)1, Jing-Yi Zhou(周静怡)1, Qi Sun(孙琪)1,†, Zhi-Xiang Jin(靳志祥)2, Deng-Feng Liang(梁登峰)1, and Ting Luo(罗婷)3
1 School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China;
2 School of Computer Science and Techonology, Dongguan University of Technology, Dongguan 523808, China;
3 People's Public Security University of China, Academy of Information Network Security, Beijing 100038, China
Abstract  Monogamy and polygamy relations are essential properties of quantum entanglement, which characterize the distributions of entanglement in multipartite systems. In this paper, we establish the general monogamy relations for γ-th (0≤γα, α≥ 1) power of quantum entanglement based on unified-(q,s) entanglement and polygamy relations for δ-th (δβ, 0≤β≤1) power of entanglement of assistance based on unified-(q,s) entanglement of assistance, which provides a complement to the previous research in terms of different parameter regions of γ and δ. These results are then applied to specific quantum correlations, e.g., entanglement of formation, Renyi-q entanglement of assistance and Tsallis-q entanglement of assistance to get the corresponding monogamy and polygamy inequalities. Moreover, typical examples are presented for illustration.
Keywords:  monogamy relation      polygramy relation  
Received:  07 October 2023      Revised:  01 December 2023      Accepted manuscript online:  20 December 2023
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175147), the Disciplinary Funding of Beijing Technology and Business University, the Fundamental Research Funds for the Central Universities (Grant No. 2022JKF02015), and the Research and Development Program of Beijing Municipal Education Commission (Grant No. KM202310011012).
Corresponding Authors:  Qi Sun     E-mail:  Sunqi_916@163.com

Cite this article: 

Tao Li(李陶), Jing-Yi Zhou(周静怡), Qi Sun(孙琪), Zhi-Xiang Jin(靳志祥), Deng-Feng Liang(梁登峰), and Ting Luo(罗婷) Complementary monogamy and polygamy properties among multipartite systems 2024 Chin. Phys. B 33 030305

[1] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[2] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[3] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[4] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[5] Pawlowski M 2010 Phys. Rev. A 82 032313
[6] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[7] Zhu X N and Fei S M 2014 Phys. Rev. A 90 024304
[8] Kim J S 2018 Phys. Rev. A 97 012334
[9] Jin Z X and Fei S M 2019 Phys. Rev. A 99 032343
[10] Jin Z X and Fei S M 2017 Quantum. Inf. Process. 16 77
[11] Jin Z X, Li J, Li T and Fei S M 2018 Phys. Rev. A 97 032336
[12] Jin Z X, Fei S M, Li-Jost X Q and Qiao C F 2022 Adv. Quantum Technol. 5 2100148
[13] Gour G, Meyer D A and Sanders B C 2005 Phys. Rev. A 72 042329
[14] Goura G, Bandyopadhyayb S and Sandersc B C 2007 J. Math. Phys. 48 012108
[15] Kim J S 2018 Sci. Rep. 8 12245
[16] Jin Z X and Qiao C F 2020 Chin. Phys. B 29 020305
[17] Kim J S and Sanders B C 2011 J. Phys. A: Math. Theor. 44 295303
[18] Kim J S 2010 Phys. Rev. A 81 062328
[19] Hu X and Ye Z 2006 J. Math. Phys. 47 023502
[20] Rastegin A E 2011 J. Stat. Phys. 143 1120
[21] Tsallis C 1998 J. Stat. Phys. 52 479
[22] Horodecki R, Horodecki P and Horodecki M 1996 Phys. Lett. A 210 377
[23] Kim J S and Sanders B C 2010 J. Phys. A: Math. Theor. 43 445305
[24] Kim J S 2012 Phys. Rev. A 85 032335
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[3] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[4] Monogamy of quantum correlations in the one-dimensional anisotropic XY model
Xu Shuai (徐帅), Song Xue-Ke (宋学科), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(1): 010302.
[5] Monogamy relations in tripartite quantum system
Li Jiao-Jiao(李姣姣) and Wang Zhi-Xi(王志玺). Chin. Phys. B, 2010, 19(10): 100310.
No Suggested Reading articles found!