Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 105201    DOI: 10.1088/1674-1056/ac1b89
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Optimization of the beam quality in ionization injection by a tailoring gas profile

Ye Cui(崔野)1, Guo-Bo Zhang(张国博)1,†, Yan-Yun Ma(马燕云)2,3,‡, Xiao-Hu Yang(杨晓虎)1,3, Jia-Yin Mu(牟佳胤)1, Hai-Bo Yao(姚海波)1, Ming Zi(资明)1, Jie Zhou(周洁)4, Jing-Qi Yang(杨静琦)4, Li-Xiang Hu(胡理想)1, and Li-Chao Tian(田立朝)1
1 College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China;
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
3 Collaborative Innovation Center of IFSA(CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China;
4 XLAB, The Second Academy of CASIC, Beijing 100854, China
Abstract  A new scheme is proposed to improve the electron beam quality of ionization-induced injection by tailoring gas profile in laser wakefield acceleration. Two-dimensional particle-in-cell simulations show that the ionization-induced injection mainly occurs in high-density stage and automatically truncates in low-density stage due to the decrease of the wakefield potential difference. The beam loading can be compensated by the elongated beam resulting from the density transition stage. The beam quality can be improved by shorter injection distance and beam loading effect. A quasi-monoenergetic electron beam with a central energy of 258 MeV and an energy spread of 5.1% is obtained under certain laser-plasma conditions.
Keywords:  laser wakefield acceleration      ionization-induced injection      the beam loading effect  
Received:  03 June 2021      Revised:  27 July 2021      Accepted manuscript online:  07 August 2021
PACS:  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.65.Rr (Particle-in-cell method)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005297, 11975308, and 11775305), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25050200), the Fund of Science Challenge Project (Grant No. TZ2018001), Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5651), and the Fund of the State Key Laboratory of Laser Interaction with Matter (Grant No. SKLLIM1908).
Corresponding Authors:  Guo-Bo Zhang, Yan-Yun Ma     E-mail:  zgb830@163.com;plasim@163.com

Cite this article: 

Ye Cui(崔野), Guo-Bo Zhang(张国博), Yan-Yun Ma(马燕云), Xiao-Hu Yang(杨晓虎), Jia-Yin Mu(牟佳胤), Hai-Bo Yao(姚海波), Ming Zi(资明), Jie Zhou(周洁), Jing-Qi Yang(杨静琦), Li-Xiang Hu(胡理想), and Li-Chao Tian(田立朝) Optimization of the beam quality in ionization injection by a tailoring gas profile 2021 Chin. Phys. B 30 105201

[1] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[2] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[3] Strickland D and Mourou G 1985 Opt. Commun. 55 447
[4] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F and Malka V 2004 Nature 431 541
[5] Geddes C G R, Toth C, Van T J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J and Leemans W P 2004 Nature 431 538
[6] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R and Krushelnick K 2004 Nature 431 535
[7] Zhang G B, Chen M, Schroeder C B, Luo J, Zeng M, Li F Y, Yu L L, Weng S M, Ma Y Y, Yu T P, Sheng Z M and Esarey E 2016 Phys. Plasmas 23 033114
[8] Lu W, Huang C, Zhou M, Mori W B and Katsouleas T 2006 Phys. Rev. Lett. 96 165002
[9] Lu W, Huang C, Zhou M, Tzoufras M, Tsung F S, Mori W B and Katsouleas T 2006 Phys. Plasmas 13 056709
[10] Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P and Leemans W P 2019 Phys. Rev. Lett. 122 084801
[11] Faure J, Rechatin C, Norlin A Lifschitz A, Glinec Y and Malka V 2006 Nature 444 737
[12] Kotaki H, Daito I, Kando M, Hayashi Y, Kawase K, Kameshima T, Fukuda Y, Homma T, Ma J, Chen L M, Esirkepov T Z, Pirozhkov A S, Koga J K, Faenov A, Pikuz T, Kiriyama H, Okada H, Shimomura T, Nakai Y, Tanoue M, Sasao H, Wakai D, Matsuura H, Kondo S, Kanazawa S, Sugiyama A, Daido H and Bulanov S V 2009 Phys. Rev. Lett. 103 194803
[13] Geddes C G R, Nakamura K, Plateau G R, Toth C, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R and Leemans W P 2008 Phys. Rev. Lett. 100 215004
[14] Ke L T, Yu C H, Feng K, Qin Z Y, Jiang K N, Wang H, Luan S X, Yang X J, Xu Y, Leng Y X, Wang W T, Liu J S and Li R X 2021 Appl. Sci. 11 2560
[15] Oz E, Deng S, Katsouleas T, Muggli P, Barnes C D, Blumenfeld I, Decker F J, Emma P, Hogan M J, Ischebeck R, Iverson R H, Kirby N, Krejcik P, O'Connell C, Siemann R H, Walz D, Auerbach D, Clayton C E, Huang C, Johnson D K, Joshi C, Lu W, Marsh K A, Mori W B and Zhou M 2007 Phys. Rev. Lett. 98 084801
[16] Pak A, Marsh K A, Martins S F, Lu W, Mori W B and Joshi C 2010 Phys. Rev. Lett. 104 025003
[17] Mirzaie M, Li S, Zeng M, Hafz N A M, Chen M, Li G Y, Zhu Q J, Liao H, Sokollik T, Liu F, Ma Y Y, Chen L M, Sheng Z M and Zhang J 2015 Sci. Rep. 5 14659
[18] McGuffey C, Thomas A G R, Schumaker W, Matsuoka T, Chvykov V, Dollar F J, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K, Bychenkov V Yu, Glazyrin I V and Karpeev A V 2010 Phys. Rev. Lett. 104 025004
[19] Clayton C E, Ralph J E, Albert F, Fonseca R A, Glenzer S H, Joshi C, Lu W, Marsh K A, Martins S F, Mori W B, Pak A, Tsung F S, Pollock B B, Ross J S, Silva L O and Froula D H 2010 Phys. Rev. Lett. 105 105003
[20] Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X and Xu Z Z 2011 Phys. Rev. Lett. 107 035001
[21] Fuchs M, Weingartner R, Popp A, Major Z, Becker S, Osterhoff J, Cortrie I, Zeitler B, Hörlein R, Tsakiris G D, Schramm T U, Rowlands-Rees T P, Hooker S M, Habs D, Krausz F, Karsch S and Grüner F 2009 Nat. Phys. 5 826
[22] Zhang G B, Chen M, Yang X H, Liu F, Weng S M, Ma Y Y, Zou D B, Yu T P, Shao F Q and Sheng Z M 2020 Opt. Express 28 29927
[23] Sciaini G and Miller R J D 2011 Rep. Prog. Phys. 74 096101
[24] Faure J, van der Geer B, Beaurepaire B, Gallé G, Vernier A and Lifschitz A 2016 Phys. Rev. Accel. Beams 19 021302
[25] Nakajima K 2008 Nat. Phys. 4 92
[26] Chen M, Sheng Z M, Ma Y Y and Zhang J 2006 J. Appl. Phys. 99 056109
[27] Chen M, Esarey E, Schroeder C B, Geddes C G R and Leemans W P 2012 Phys. Plasmas 19 033101
[28] Sun G Z, Ott E, Lee Y C and Guzdar P 1987 Phys. Fluids 30 526
[29] Yu L L, Esarey E, Schroeder C B, Vay J L, Benedetti C, Geddes C G R, Chen M and Leemans W P 2014 Phys. Rev. Lett. 112 125001
[30] Zhao Q, Weng S M, Sheng Z M, Chen M, Zhang G B, Mori W B, Hidding B, Jaroszynski D A and Zhang J 2018 New J. Phys. 20 063031
[31] Cui Y, Zhang G B, Ma Y Y, Zou D B, Yang X H, Chen M, Liu J X, Ge Z Y, Tian L C, Gan L F and Shao F Q 2019 Plasma Phys. Contr. F. 61 085023
[32] Tzoufras M, Lu W, Tsung F S, Huang C, Mori W B, Katsouleas T, Vieira J, Fonseca R A and Silva L O 2009 Phys. Plasmas 16 056705
[33] Yang X H, Dieckmann M E, Sarri G and Borghesi M 2012 Phys. Plasmas 19 113110
[34] Xu H, Yu W, Yu M Y, Wong A Y, Sheng Z M, Murakami M and Zhang J 2012 Appl. Phys. Lett. 100 144101
[1] Developments in laser wakefield accelerators: From single-stage to two-stage
Li Wen-Tao (李文涛), Wang Wen-Tao (王文涛), Liu Jian-Sheng (刘建胜), Wang Cheng (王成), Zhang Zhi-Jun (张志钧), Qi Rong (齐荣), Yu Chang-Hai (余昌海), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2015, 24(1): 015205.
No Suggested Reading articles found!