CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Role of localised surface plasmon polaritons coupling in optical transmission through double-layer metal apertures |
Gong Zhi-Qiang(龚志强)a)† and Liu Jian-Qiang(刘坚强)b) |
a Institute of Mathematics and Physics, Central South University of Forestry andTechnology, Changsha 410004, China; b College of Science, Jiujiang University, Jiujiang 332005, China |
|
|
Abstract In this paper, we investigate the optical properties of the double-layer metal films perforated with single apertures by analysing the coupling of localized surface plasmon polaritons (LSPPs). It is found that the amplitude and the wavelength of transmission peak in such a structure can be adjusted by changing the longitudinal interval D between two films and the lateral displacements $d_{x}$ and $d_{y}$ which are parallel and perpendicular to the polarization direction of incident light, respectively. The variation of longitudinal interval D results in the redshift of transmission peak due to the change of coupling strength of LSPPs near the single apertures. The amplitude of transmission peak decreases with the increase of $d_{y}$ and is less than that in the case of $d_{x}$, which originates from the difference in coupling manner between LSPPs and the localized natures of LSPPs.
|
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
78.66.Bz
|
(Metals and metallic alloys)
|
|
73.21.Ac
|
(Multilayers)
|
|
Cite this article:
Gong Zhi-Qiang(龚志强) and Liu Jian-Qiang(刘坚强) Role of localised surface plasmon polaritons coupling in optical transmission through double-layer metal apertures 2010 Chin. Phys. B 19 067303
|
[1] |
Genet C and Ebbesen T W 2007 Nature 445 39
|
[2] |
Bethe H A 1944 Phys. Rev. 66 163
|
[3] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[4] |
Porto J A, Garcìa-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
|
[5] |
Popov E, Neviere M, Enoch S and Reinisc R 2000 Phys. Rev. B 62 16100
|
[6] |
Miguel B, Mario S, Miguel N C and Francisco F 2007 Opt. Express 15 1107
|
[7] |
Huang X R, Peng R W, Wang Z, Gao F and Jiang S S 2007 Phys. Rev. A 76 035802
|
[8] |
Ma J Y, Xu C, Liu S J, Zhang D W, Jin Y X, Fan Z X and Shao J D 2009 Chin. Phys. B 18 1029
|
[9] |
Hou B, Hang Z H, Wen W, Chan C T and Sheng P 2006 Appl. Phys. Lett. 89 131917
|
[10] |
Tsai M W, Chuang T H, Chang H Y and Lee S C 2006 Appl. Phys. Lett. 89 093102
|
[11] |
Fang X, Li Z, Long Y, Wei H, Liu R, Ma J, Kamran M, Zhao H, Han X, Zhao B and Qiu X 2007 Phys. Rev. Lett. 99 066805
|
[12] |
Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W and Ming N B 2008 Phys. Rev. Lett. 101 087401
|
[13] |
Meng T H, Zhao G Z and Zhang C L 2008 Acta Phys. Sin. 57 3846 (in Chinese)
|
[14] |
Cao Q and Lalanne P 2002 Phys. Rev. Lett. 88 057403
|
[15] |
Lezec H J and Thio T 2004 Opt. Express 12 3629
|
[16] |
Gay G, Alloschery O, Viaris de Lesegno B, Weiner J and Lezec H J 2006 Phys. Rev. Lett. 96 213901
|
[17] |
Medina F, Ruiz-Cruz J A, Mesa F, Rebollar J M, Montejo-Garai J R and Marqu\acute{\rm e s R 2009 Appl. Phys. Lett. 95 071102
|
[18] |
Degiron A and Ebbesen T W 2005 J. Opt. A : Pure Appl. Opt. 7 S90
|
[19] |
Takakura Y 2001 Phys. Rev. Lett. 86 5601
|
[20] |
Klein Koerkamp K J, Enoch S, Segerink F B, Van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
|
[21] |
Van Der Molen K L, Klein Koerkamp K J, Enoch S, Segerink F B, Van Hulst N F and Kuipers L 2005 Phys. Rev. B 72 045421
|
[22] |
Garcìa-Vidal F J, Martìn-Moreno L, Moreno E, Kumar L K S and Gordon R 2006 Phys. Rev. B 74 153411
|
[23] |
Degiron A, Lezec H J, Yamamoto N and Ebbesen T W 2004 Opt. Commun. 239 61
|
[24] |
Garcìa-Vidal F J, Martìn-Moreno L, Moreno E, Kumar L K S and Gordon R 2006 Phys. Rev. B 74 153411
|
[25] |
Miyamaru F and Hangyo M 2005 Phys. Rev. B 71 165408
|
[26] |
Ye Y H and Zhang J Y 2005 Opt. Lett. 30 1521
|
[27] |
Ye Y H, Wang Z B, Yan D and Zhang J Y 2006 Appl. Phys. Lett. 89 221108
|
[28] |
Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H and Wang M 2007 Phys. Rev. B 76 195405
|
[29] |
He M D, Wang L L, Liu J Q, Zhai X, Wan Q, Chen X and Zou B S 2008 Appl. Phys. Lett. 93 221909
|
[30] |
Wang J, Zeng Y, Chen X, Lu W and Moloney Jerome V 2009 J. Opt. Soc. Am. B 26 B7
|
[31] |
Baida F I and Van Labeke D 2003 Phys. Rev. B 67 155314
|
[32] |
Liu J Q, He M D, Zhai X, Wang L L, Wen S, Chen L, Zhe S, Wan Q, Zou B S and Yao J 2009 Opt. Express 17 1859
|
[33] |
Roden J A and Gedney S D 2000 Micro. Opt. Tech. Lett. 27 334
|
[34] |
Degiron A, Lezec H J, Barnes W L and Ebbesen T W 2002 Appl. Phys. Lett. 81 4327 80*
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|