Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 067303    DOI: 10.1088/1674-1056/19/6/067303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Role of localised surface plasmon polaritons coupling in optical transmission through double-layer metal apertures

Gong Zhi-Qiang(龚志强)a) and Liu Jian-Qiang(刘坚强)b)
a Institute of Mathematics and Physics, Central South University of Forestry andTechnology, Changsha 410004, China; b College of Science, Jiujiang University, Jiujiang 332005, China
Abstract  In this paper, we investigate the optical properties of the double-layer metal films perforated with single apertures by analysing the coupling of localized surface plasmon polaritons (LSPPs). It is found that the amplitude and the wavelength of transmission peak in such a structure can be adjusted by changing the longitudinal interval D between two films and the lateral displacements $d_{x}$ and $d_{y}$ which are parallel and perpendicular to the polarization direction of incident light, respectively. The variation of longitudinal interval D results in the redshift of transmission peak due to the change of coupling strength of LSPPs near the single apertures. The amplitude of transmission peak decreases with the increase of $d_{y}$ and is less than that in the case of $d_{x}$, which originates from the difference in coupling manner between LSPPs and the localized natures of LSPPs.
Keywords:  enhanced transmission      localized surface plasmon polaritons      double-layer metal apertures  
Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.66.Bz (Metals and metallic alloys)  
  73.21.Ac (Multilayers)  

Cite this article: 

Gong Zhi-Qiang(龚志强) and Liu Jian-Qiang(刘坚强) Role of localised surface plasmon polaritons coupling in optical transmission through double-layer metal apertures 2010 Chin. Phys. B 19 067303

[1] Genet C and Ebbesen T W 2007 Nature 445 39
[2] Bethe H A 1944 Phys. Rev. 66 163
[3] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[4] Porto J A, Garcìa-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
[5] Popov E, Neviere M, Enoch S and Reinisc R 2000 Phys. Rev. B 62 16100
[6] Miguel B, Mario S, Miguel N C and Francisco F 2007 Opt. Express 15 1107
[7] Huang X R, Peng R W, Wang Z, Gao F and Jiang S S 2007 Phys. Rev. A 76 035802
[8] Ma J Y, Xu C, Liu S J, Zhang D W, Jin Y X, Fan Z X and Shao J D 2009 Chin. Phys. B 18 1029
[9] Hou B, Hang Z H, Wen W, Chan C T and Sheng P 2006 Appl. Phys. Lett. 89 131917
[10] Tsai M W, Chuang T H, Chang H Y and Lee S C 2006 Appl. Phys. Lett. 89 093102
[11] Fang X, Li Z, Long Y, Wei H, Liu R, Ma J, Kamran M, Zhao H, Han X, Zhao B and Qiu X 2007 Phys. Rev. Lett. 99 066805
[12] Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W and Ming N B 2008 Phys. Rev. Lett. 101 087401
[13] Meng T H, Zhao G Z and Zhang C L 2008 Acta Phys. Sin. 57 3846 (in Chinese)
[14] Cao Q and Lalanne P 2002 Phys. Rev. Lett. 88 057403
[15] Lezec H J and Thio T 2004 Opt. Express 12 3629
[16] Gay G, Alloschery O, Viaris de Lesegno B, Weiner J and Lezec H J 2006 Phys. Rev. Lett. 96 213901
[17] Medina F, Ruiz-Cruz J A, Mesa F, Rebollar J M, Montejo-Garai J R and Marqu\acute{\rm e s R 2009 Appl. Phys. Lett. 95 071102
[18] Degiron A and Ebbesen T W 2005 J. Opt. A : Pure Appl. Opt. 7 S90
[19] Takakura Y 2001 Phys. Rev. Lett. 86 5601
[20] Klein Koerkamp K J, Enoch S, Segerink F B, Van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
[21] Van Der Molen K L, Klein Koerkamp K J, Enoch S, Segerink F B, Van Hulst N F and Kuipers L 2005 Phys. Rev. B 72 045421
[22] Garcìa-Vidal F J, Martìn-Moreno L, Moreno E, Kumar L K S and Gordon R 2006 Phys. Rev. B 74 153411
[23] Degiron A, Lezec H J, Yamamoto N and Ebbesen T W 2004 Opt. Commun. 239 61
[24] Garcìa-Vidal F J, Martìn-Moreno L, Moreno E, Kumar L K S and Gordon R 2006 Phys. Rev. B 74 153411
[25] Miyamaru F and Hangyo M 2005 Phys. Rev. B 71 165408
[26] Ye Y H and Zhang J Y 2005 Opt. Lett. 30 1521
[27] Ye Y H, Wang Z B, Yan D and Zhang J Y 2006 Appl. Phys. Lett. 89 221108
[28] Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H and Wang M 2007 Phys. Rev. B 76 195405
[29] He M D, Wang L L, Liu J Q, Zhai X, Wan Q, Chen X and Zou B S 2008 Appl. Phys. Lett. 93 221909
[30] Wang J, Zeng Y, Chen X, Lu W and Moloney Jerome V 2009 J. Opt. Soc. Am. B 26 B7
[31] Baida F I and Van Labeke D 2003 Phys. Rev. B 67 155314
[32] Liu J Q, He M D, Zhai X, Wang L L, Wen S, Chen L, Zhe S, Wan Q, Zou B S and Yao J 2009 Opt. Express 17 1859
[33] Roden J A and Gedney S D 2000 Micro. Opt. Tech. Lett. 27 334
[34] Degiron A, Lezec H J, Barnes W L and Ebbesen T W 2002 Appl. Phys. Lett. 81 4327 80*
[1] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
No Suggested Reading articles found!