Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110401    DOI: 10.1088/1674-1056/abb3f0
GENERAL Prev   Next  

Jeans gravitational instability with κ-deformed Kaniadakis distribution in Eddington-inspired Born–Infield gravity

Wei-Heng Yang(杨伟恒)1,2, Yu-Zhen Xiong(熊玉珍)1,2, Hui Chen(陈辉)1,2, †, and San-Qiu Liu(刘三秋)1,2$
1 Department of Physics, Nanchang University, Nanchang 330031, China
2 Jiangxi Provincial Key Laboratory of Fusion and Information Control, Nanchang 330031, China
Abstract  

Based on the framework of Kaniadakis’ statistics and its related kinetic theory, the Jeans instability for self-gravitational systems in the background of Eddington-inspired Born–Infield (EiBI) gravity is revisited. A dispersion relation generalizing the Jeans modes is derived by modifying the Maxwellian distribution to a family of power law distributions parameterized by the κ parameter. It is established that the κ-deformed Kaniadakis distribution has significant effects on the Jeans modes of the collisionless EiBI-gravitational systems. And as expected, in the limitation κ → 0, the corresponding results for Maxwellian case are recovered. The related result in the present work is valuable for the investigations involving the fields of astrophysics such as neutron stars, accretion disks, and relevant plasma physics, etc.

Keywords:  Jeans instability      EiBI gravity      κ-deformed Kaniadakis distribution  
Received:  11 July 2020      Revised:  16 August 2020      Accepted manuscript online:  01 September 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11763006 and 11863004) and the Fund from the Jiangxi Provincial Key Laboratory of Fusion and Information Control (Grant No. 20171BCD40005).
Corresponding Authors:  Corresponding author. E-mail: hchen61@ncu.edu.cn   

Cite this article: 

Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), Hui Chen(陈辉), and San-Qiu Liu(刘三秋)$ Jeans gravitational instability with κ-deformed Kaniadakis distribution in Eddington-inspired Born–Infield gravity 2020 Chin. Phys. B 29 110401

Fig. 1.  

The square of normalized growth rate (${\omega }_{* }^{2}={\omega }_{{\rm{r}}}^{2}/4\pi G{\rho }_{0}$) versus the normalized wave-number (k* = k/kJ) in high frequency regime with different κ and χ < 0.

Fig. 2.  

The square of normalized growth rate (${\omega }_{* }^{2}={\omega }_{{\rm{r}}}^{2}/4\pi G{\rho }_{0}$) versus the normalized wave-number (k* = k/kJ) in high frequency regime with different κ and χ > 0.

Fig. 3.  

The normalized growth rate (${\varOmega }_{* }={\omega }_{{\rm{i}}}/4\pi G{\rho }_{0}$) versus the normalized wave-number (k* = k/kJ) in low frequency regime with different κ and χ < 0.

Fig. 4.  

The normalized growth rate (Ω* = ωi/4 π G ρ0) versus the normalized wave number (k* = k/kJ) in low frequency regime with different κ and χ > 0.

[1]
Jeans J H 1929 Astronomy and Cosmogony Cambridge Cambridge University Press
[2]
Binney J Tremaine S 1987 Galactic Dynamics Princeton Princeton University Press
[3]
Dwivedi C B Tiwari R S Sayal V K Sharma S R 1989 J. Plasma Phys. 41 219 DOI: 10.1017/S0022377800013805
[4]
Dwivedi C B Sen A K Bujarbarua S 1999 Astron. Astrophys. 345 1049 DOI: http://aa.springer.de/papers/9345003/2301049/small.htm
[5]
Chen H Zhang S X Liu S Q 2017 Chin. Phys. Lett. 34 075101 DOI: 10.1088/0256-307X/34/7/075101
[6]
Xu S Lazarian A 2020 Astrophys. J. 890 157 DOI: 10.3847/1538-4357/ab6e63
[7]
Pandey B P Avinash K Dwivedi C B 1994 Phy. Rev. E 49 5599 DOI: 10.1103/PhysRevE.49.5599
[8]
Gaurav S Avinash K 2018 Phys. Plasmas 25 114503 DOI: 10.1063/1.5058284
[9]
Trigger S A Ershkovich A I Heijst G J F Schram P P J M 2004 Phys. Rev. E 69 066403 DOI: 10.1103/PhysRevE.69.066403
[10]
Kremer G M Andre R 2016 Int. J. Mod. Phys. D 25 1650012 DOI: 10.1142/S0218271816500127
[11]
Kremer G M Richarte M G Schiefer E M 2019 Eur. Phys. J. C 79 492 DOI: 10.1140/epjc/s10052-019-6965-3
[12]
Shahmansouri M Khodabakhshi N 2018 Chin. Phys. B 27 105206 DOI: 10.1088/1674-1056/27/10/105206
[13]
Ma Y R Li L J Duan W S 2019 Chin. Phys. B 28 025201 DOI: 10.1088/1674-1056/28/2/025201
[14]
Apul N D 2017 Chin. Phys. B 26 025203 DOI: 10.1088/1674-1056/26/2/025203
[15]
Sarkar S Maity S Banerjee S 2011 Phys. Scr. 84 045501 DOI: 10.1088/0031-8949/84/04/045501
[16]
Shan S A Mushtaq A 2011 Chin. Phys. Lett. 28 075204 DOI: 10.1088/0256-307X/28/7/075204
[17]
Guo Z R Yang Z Q Yin B X Sun M Z 2010 Chin. Phys. B 19 115203 DOI: 10.1088/1674-1056/19/11/115203
[18]
Mace R L Verheest F Hellberg M A 1998 Phys. Lett. A 237 146 DOI: 10.1016/S0375-9601(97)00873-6
[19]
Banados M Ferreira P G 2010 Phys. Rev. Lett. 105 011101 DOI: 10.1103/PhysRevLett.105.011101
[20]
Capozziello S Laurentis M De Martino I De Formisano M Odintsov S D 2012 Phys. Rev. D 85 044022 DOI: 10.1103/PhysRevD.85.044022
[21]
Capozziello S Laurentis M De 2012 Ann. Phys. 524 545 DOI: 10.1002/andp.v524.9/10
[22]
Kremer G M 2020 Physica A 545 123667 DOI: 10.1016/j.physa.2019.123667
[23]
Martino I D Capolupo A 2017 Eur. Phys. J. C 77 715 DOI: 10.1140/epjc/s10052-017-5300-0
[24]
Kazemi A Roshan M Martino I D Laurentis M D 2020 Eur. Phys. J. C 80 150 DOI: 10.1140/epjc/s10052-020-7662-y
[25]
Arbuzova E V Dolgov A D Reverberi L 2014 Phys. Lett. B 739 279 DOI: 10.1016/j.physletb.2014.11.004
[26]
Rezzolla L Zanotti O 2013 Relativistic Hydrodynamics Oxford Oxford University Press
[27]
Tsallis C 1988 J. Stat. Phys. 52 479 DOI: 10.1007/BF01016429
[28]
Silva R Plastino A R Lima J A S 1998 Phys. Lett. A 249 401 DOI: 10.1016/S0375-9601(98)00710-5
[29]
Kaniadakis G 2001 Physica A 296 405 DOI: 10.1016/S0378-4371(01)00184-4
[30]
Beck C Cohen E G D 2003 Physica A 322 267 DOI: 10.1016/S0378-4371(03)00019-0
[31]
Ourabah K Tribeche M 2014 Phys. Rev. E 66 056125 DOI: 10.1103/PhysRevE.66.056125
[32]
Ourabah K Hamici-Bendimerad A H Tribeche M 2015 Phys. Scr. 90 045101 DOI: 10.1088/0031-8949/90/4/045101
[33]
Kaniadakis G 2002 Phys. Rev. E 66 056125 DOI: 10.1103/PhysRevE.66.056125
[34]
Teweldeberhan A M Miller H G Tegen G 2003 Int. J. Mod. Phys. E 12 669 DOI: 10.1142/S021830130300148X
[35]
Chen H Zhang S X Liu S Q 2017 Phys. Plasmas 24 022125 DOI: 10.1063/1.4976992
[36]
Rossani A Scarfone A M 2004 J. Phys. A 37 4955 DOI: 10.1088/0305-4470/37/18/004
[37]
Biro T S Kaniadakis G 2006 Eur. Phys. J. B 50 3 DOI: 10.1140/epjb/e2006-00112-3
[38]
Casas G A Nobre F D Curado E M F 2012 Phys. Rev. E 86 061136 DOI: 10.1103/PhysRevE.86.061136
[39]
Clementi F Gallegati M Kaniadakis G Landini S 2016 Eur. Phys. J. Spec. Top. 225 1959 DOI: 10.1140/epjst/e2016-60014-2
[40]
Abreu E M C Neto J A Barboza E M Nunes R C 2016 Europhys. Lett. 114 55001 DOI: 10.1209/0295-5075/114/55001
[41]
Binney J Tremaine S 1994 Galactic Dynamics Princeton Princeton University Press
[42]
Gougam L A Tribeche M 2016 Phys. Plasmas 23 014501 DOI: 10.1063/1.4939477
[43]
Alexandrov A F Bogdankevich L S Rukhadze A A 1984 Principles of Plasma Electrodynamics New York Springer-Verlag
[44]
Avelino P P 2012 J. Cosmol. Astropart. Phys. 2012 022 DOI: 10.1088/1475-7516/2012/11/022
[1] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
No Suggested Reading articles found!