CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spectral properties of Pr:CNGG crystals grown by micro-pulling-down method |
Yan-Yan Xue(薛艳艳)1, Na Li(李纳)1, Dong-Hua Hu(胡冬华)1, Qing-Song Song(宋青松)2, Xiao-Dong Xu(徐晓东)2, Dong-Hai Wang(王东海)1, Qing-Guo Wang(王庆国)1, Dong-Zhen Li(李东振)2, Zhan-Shan Wang(王占山)1, Jun Xu(徐军)1 |
1 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China;
2 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China |
|
|
Abstract Pr3+-doped calcium niobium gallium garnet (Pr:CNGG) single crystals with different Pr3+concentrations are successfully grown by the micro-pulling-down (μ-PD) method. The crystal structure, room-temperature absorption spectra, and fluorescence spectra of Pr:CNGG crystals are measured and discussed. The fluorescence results indicate their large dependence on the doping concentration. The fluorescence lifetime of the 1D2 energy level is also determined. The results indicate that Pr:CNGG crystal could be a potential solid-state laser gain medium.
|
Received: 19 February 2019
Revised: 19 April 2019
Accepted manuscript online:
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
42.70.Hj
|
(Laser materials)
|
|
78.45.+h
|
(Stimulated emission)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701002), the National Natural Science Foundation of China (Grant Nos. 61621001 and 61605069), and the MOE Key Laboratory of Advanced Micro-Structured Materials, China. |
Corresponding Authors:
Xiao-Dong Xu, Jun Xu
E-mail: xdxu79@jsnu.edu.cn;xujun@mail.shcnc.ac.cn
|
Cite this article:
Yan-Yan Xue(薛艳艳), Na Li(李纳), Dong-Hua Hu(胡冬华), Qing-Song Song(宋青松), Xiao-Dong Xu(徐晓东), Dong-Hai Wang(王东海), Qing-Guo Wang(王庆国), Dong-Zhen Li(李东振), Zhan-Shan Wang(王占山), Jun Xu(徐军) Spectral properties of Pr:CNGG crystals grown by micro-pulling-down method 2019 Chin. Phys. B 28 087801
|
[1] |
Chivian J S, Case W E and Eden D D 1979 Appl. Phys. Lett. 35 124
|
[2] |
Koch M E, Kueny A W and Case W E 1990 Appl. Phys. Lett. 56 1083
|
[3] |
Kück S, Sokólska I, Henke M, SchefflerT and Osiac E 2005 Phys. Rev. B 71 165112
|
[4] |
Lv S Z, Wang Y, Zhu Z J, You Z Y, Li J F, Gao S F, Wang H Y and Tu C Y 2014 Appl. Phys. B 116 83
|
[5] |
Esterowitz L, Allen R, Kruer M, BartoliF, Goldberg L S, Jenssen H P, Linz A and Nicolai V O 1977 J. Appl. Phys. 48 650
|
[6] |
Liu W and Zhang Q 2017 Mater. Res. Innovat. 21 65
|
[7] |
Gün T, Metz P and Huber G 2011 Opt. Lett. 36 1002
|
[8] |
Macalik L, Mączka M, Hanuza J, Godlewska P, Solarz P, Ryba-Romanowski W and Kaminskii A A 2008 J. Alloys Compd. 451 232
|
[9] |
Deopa N, Rao A S, Mahamuda S, Gupta M, Jayasimhadri M, Haranath D andVijaya Prakash G 2017 J. Alloys Compd. 708 911
|
[10] |
Naito K, Yokotani A, Sasaki T, Okuyama T, Yamanaka M, Nakatsuka M, Nakai S, Fukuda T and Timoshechkin M I 1993 Appl. Opt. 32 7387
|
[11] |
Voronko Y K, Sobol A A, Karasik A Y, Eskov N A, Rabochkina P A andUshakov S N 2002 Opt. Mater. 20 197
|
[12] |
Voronko Y K, Gessen S B, Es' kov N A, Osiko V V, Sobol A A, Timoshechkin M I, Ushakov S N and Tsymbal L I 1992 Sov. J. Quantum Elect 22 581
|
[13] |
Shimamura K, Sugiyama K, Uda S and Fukuda T 1995 Jpn. J. Appl. Phys. 34 4894
|
[14] |
Tsuboi T, Tanigawa M andShimamura K 2000 Opt. Commun. 186 127
|
[15] |
Serrano M D, ÁlvarezP érez J O, Zaldo C, Sanz J, Sobrados I, Alonso J A, Cascales C, FernándezD íaz M T and Jezowski A 2017 J. Mater. Chem. C 5 11481
|
[16] |
Gheorghe L, Greculeasa M, Voicu F, Gheorghe C, Hau S, Vlaicu A M, Belikov K N, Yu Bryleva E and Gaiduk O V 2018 Opt. Mater. 84 335
|
[17] |
Brenier A, Boulon G, Shimamura K and Fukuda T 1999 J. Cryst. Growth 204 145
|
[18] |
Kaminskii A A, Belokoneva E L, Butashin A V, Kurbanov K, Markosian A A, Mill B V, Nikolskaia O K and Sarsikov S E 1986 Inorg. Mater. 22 927
|
[19] |
Cornacchia F, Di Lieto A, Tonelli M, RichterA, Heumann E and Huber G 2008 Opt. Express 16 15932
|
[20] |
Reichert F, Moglia F, Marzahl D T, MetzP, Fechner M, Hansen N O and Huber G 2012 Opt. Express 20 20387
|
[21] |
Zhang L, Xia Y, Shen X and Wei W 2019 Spectrochim Acta Part. A 206 454
|
[22] |
Liu B, Shi J, Wang Q, TangH, Liu J, Zhao H, Li D, Liu J, Xu X, Wang Z and Xu J 2018 J. Lumin 196 76
|
[23] |
Özen G, Forte O and Di Bartolo B 2005 J. Appl. Phys. 97 013510
|
[24] |
Wang Y, Li J, You Z, Zhu Z and Tu C 2010 J. Alloys Compd. 502 184
|
[25] |
Özen G, Forte O, Di Bartolo B and Collins J M 2007 J. Lumin 125 223
|
[26] |
Kränkel C, Marzahl D T, Moglia F, Huber G andMetz P W 2016 Laser Photon. Rev. 10 548
|
[27] |
Yu D C, Chen Q J, Lin H H, Wang Y Z and Zhang Q Y 2016 Opt. Mater. Express 6 197
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|