|
|
General way to define tunneling time |
Zheng Shu(舒正)1, Xiaolei Hao(郝小雷)2, Weidong Li(李卫东)2, Jing Chen(陈京)1,3,4 |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 High Energy Density Physics Simulation(HEDPS), Center for Applied Physics and Technology, Peking University, Beijing 100084, China;
4 Center for Advanced Material Diagnostic Technology, Shenzhen Technology University, Shenzhen 518118, China |
|
|
Abstract With the development of attosecond science, tunneling time can now be measured experimentally with the attoclock technique. However, there are many different theoretical definitions of tunneling time and no consensus has been achieved. Here, we bridge the relationship between different definitions of tunneling time based on a quantum travel time in one-dimensional rectangular barrier tunneling problem. We find that the real quantum travel time tRe is equal to the Bohmian time tBohmian, which is related to the resonance lifetime of a bound state. The total quantum travel time τt can perfectly retrieve the transversal time tx and the Büttiker-Landauer time τBL in two opposite limits, regardless of the particle energy.
|
Received: 29 January 2019
Revised: 20 February 2019
Accepted manuscript online:
|
PACS:
|
03.65.Xp
|
(Tunneling, traversal time, quantum Zeno dynamics)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401100) and the National Natural Science Foundation of China (Grant Nos. 11425414, 11504215, and 11874246). |
Corresponding Authors:
Xiaolei Hao, Jing Chen
E-mail: xlhao@sxu.ac.cn;chen_jing@iapcm.ac.cn
|
Cite this article:
Zheng Shu(舒正), Xiaolei Hao(郝小雷), Weidong Li(李卫东), Jing Chen(陈京) General way to define tunneling time 2019 Chin. Phys. B 28 050301
|
[1] |
Maccoll L A 1932 Phys. Rev. 40 621
|
[2] |
Smith F T 1960 Phys. Rev. 118 349
|
[3] |
Baz' A I 1967 Sov. J. Nucl. Phys. 4 182
|
[4] |
Rybachenko V F 1967 Sov. J. Nucl. Phys. 5 635
|
[5] |
Büttiker M and Landauer R 1982 Phys. Rev. Lett. 49 1739
|
[6] |
Büttiker M 1983 Phys. Rev. B 27 6178
|
[7] |
Landauer R 1989 Nature 341 567
|
[8] |
Hauge E H and Støvneng J A 1989 Rev. Mod. Phys. 61 917
|
[9] |
Landauer R and Martin T 1994 Rev. Mod. Phys. 66 217
|
[10] |
Bracher C 1997 J. Phys. B 30 2717
|
[11] |
Li Z J, Liang J Q and Kobe D H 2001 Phys. Rev. A 64 042112
|
[12] |
Mcdonald C R, Orlando G, Vampa G and Brabec T 2013 Phys. Rev. Lett. 111 090405
|
[13] |
Orlando G, Mcdonald C R, Protik N H and Brabec T 2014 Phys. Rev. A 89 014102
|
[14] |
Landsman A S and Keller U 2015 Phys. Rep. 547 1
|
[15] |
Teeny N, Yakaboylu E, Bauke H and Keitel C H 2016 Phys. Rev. Lett. 116 063003
|
[16] |
Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dörner R, Muller H G, Büttiker M and Keller U 2008 Science 322 1525
|
[17] |
Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U 2008 Nat. Phys. 4 565
|
[18] |
Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Samha M A, Madsen L B and Keller U 2012 Nat. Phys. 8 76
|
[19] |
Landsman A S, Weger M, Maurer J, Boge R, Ludwig A, Heuser S, Cirelli C, Gallmann L and Keller U 2014 Optica 1 343
|
[20] |
Barth I and Smirnova O 2011 Phys. Rev. A 84 063415
|
[21] |
Pfeiffer A N, Cirelli C, Landsman A S, Smolarski M, Dimitrovski D, Madsen L B and Keller U 2012 Phys. Rev. Lett. 109 083002
|
[22] |
Klaiber M, Yakaboylu E, Bauke H, Hatsagortsyan K Z and Keitel C H 2013 Phys. Rev. Lett. 110 153004
|
[23] |
Li M, Liu Y, Liu H, Ning Q, Fu L, Liu J, Deng Y, Wu C, Peng L Y and Gong Q 2013 Phys. Rev. Lett. 111 023006
|
[24] |
Yakaboylu E, Klaiber M and Hatsagortsyan K Z 2014 Phys. Rev. A 90 012116
|
[25] |
Klaiber M, Hatsagortsyan K Z and Keitel C H 2015 Phys. Rev. Lett. 114 083001
|
[26] |
Camus N, Yakaboylu E, Fechner L, Klaiber M, Laux M, Mi Y H, Hatsagortsyan K Z, Pfeifer T, Keitel C H and Moshammer R 2017 Phys. Rev. Lett 119 023201
|
[27] |
Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M and Smirnova O 2015 Nat. Phys. 11 503
|
[28] |
Ni H, Saalmann U and Rost J M 2016 Phys. Rev. Lett. 117 023002
|
[29] |
Eicke N and Lein M 2018 Phys. Rev. A 97 031402
|
[30] |
Bray A W, Eckart S and Kheifets A S 2018 Phys. Rev. Lett. 121 123201
|
[31] |
Sokolovski D and Baskin L M 1987 Phys. Rev. A 36 4604
|
[32] |
Hao X L, Shu Z, Li W D and Chen J 2019 arXiv:1903.06897 [atom-ph]
|
[33] |
Wiseman H M 2007 New J. Phys. 9 165
|
[34] |
Bohm D 1952 Phys. Rev. 85 166
|
[35] |
Zimmermann T, Mishra S, Doran B R, Gordon D F and Landsman A S 2016 Phys. Rev. Lett. 116 233603
|
[36] |
Damburg R J and Kolosov V V 1976 J. Phys. B 9 3149
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|