Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 050201    DOI: 10.1088/1674-1056/28/5/050201
GENERAL   Next  

Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation

Feng Guo(郭峰)
Fujian Province University Key Laboratory of Computational Science, School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
Abstract  A conformal multi-symplectic method has been proposed for the damped Korteweg-de Vries (DKdV) equation, which is based on the conformal multi-symplectic structure. By using the Strang-splitting method and the Preissmann box scheme, we obtain a conformal multi-symplectic scheme for multi-symplectic partial differential equations (PDEs) with added dissipation. Applying it to the DKdV equation, we construct a conformal multi-symplectic algorithm for it, which is of second order accuracy in time. Numerical experiments demonstrate that the proposed method not only preserves the dissipation rate of mass exactly with periodic boundary conditions, but also has excellent long-time numerical behavior.
Keywords:  conformal multi-symplectic method      damped Korteweg-de Vries (KdV) equation      dissipation preservation  
Received:  14 January 2019      Revised:  07 March 2019      Accepted manuscript online: 
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.70.Bf (Finite-difference methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the Program for Innovative Research Team in Science and Technology in Fujian Province University, China, the Quanzhou High Level Talents Support Plan, China (Grant No. 2017ZT012), and the Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University, China (Grant No. ZQN-YX502).
Corresponding Authors:  Feng Guo     E-mail:  hydhgf@163.com

Cite this article: 

Feng Guo(郭峰) Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation 2019 Chin. Phys. B 28 050201

[1] Grimshaw R, Pelinovsky E and Talipova T 2003 Wave Motion 37 351
[2] Samiran G 2012 EPL 99 36002
[3] Khan S, Rahman A, Hadi F, Zeb A and Khan M Z 2017 Contrib. Plasma Phys. 57 223
[4] Tamang J, Sarkar K and Saha A 2018 Physica A 505 18
[5] Song Z B, Yang X Y, Feng W X, Xi Z H, Li L J and Shi Y R 2018 Chin. Phys. B 27 074501
[6] Vliegenthart A C 1971 J. Eng. Math. 5 137
[7] Feng B F and Mitsui T 1998 J. Comput. Appl. Math. 90 95
[8] Yan J and Shu C W 2002 SIAM J. Numer. Anal. 40 769
[9] Li J, Ma H P and Sun W W 2000 Numer. Methods Partial Differ. Equations 16 513
[10] Zhao P F and Qin M Z 2000 J. Phys. A: Math. Gen. 33 3613
[11] Hong J L and Liu Y 2004 Math. Comput. Modell. 39 1035
[12] Cui Y F and Mao D K 2007 J. Comput. Phys. 227 376
[13] Cai J X, Hong Q and Yang B 2017 Chin. Phys. B 26 100202
[14] Wang H P, Wang Y S and Hu Y Y 2008 Chin. Phys. Lett. 25 2335
[15] Chen Y M, Song S H and Zhu H J 2012 Appl. Math. Comput. 218 5552
[16] Marsden J E, Patrick G W and Shkoller S 1998 Commun. Math. Phys. 199 351
[17] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[18] Wang Y S, Wang B and Qin M Z 2008 Sci. China. Ser. A 51 2115
[19] McLachlan R and Perlmutter M 2001 J. Geom. Phys. 39 276
[20] McLachlan R I and Quispel G R W 2001 Nonlinearity 14 1689
[21] Moore B E, Norena L and Schober C M 2013 J. Comput. Phys. 232 214
[22] Moore B E 2017 J. Comput. Appl. Math. 323 1
[23] Bhatt A, Floyd D and Moore B E 2016 J. Sci. Comput. 66 1234
[24] Strang G 1968 SIAM J. Numer. Anal. 5 506
[25] McLachlan R I and Quispel G R W 2002 Acta Numer. 11 341
[26] Moore B E 2009 Math. Comput. Simulat. 80 20
[27] Kong L H, Hong J L and Zhang J J 2010 J. Comput. Phys. 229 4259
[28] Ma Y P, Kong L H, Hong J L and Cao Y 2011 Comput. Math. Appl. 61 319
[29] Weng Z F, Zhai S Y and Feng X L 2017 Appl. Math. Modell. 42 462
[1] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[2] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[3] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[4] Magneto-elastic dynamics and bifurcation of rotating annular plate
Yu-Da Hu(胡宇达), Jiang-Min Piao(朴江民), Wen-Qiang Li(李文强). Chin. Phys. B, 2017, 26(9): 094302.
[5] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[6] Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu(傅浩), Wei-En Zhou(周炜恩), Xu Qian(钱旭), Song-He Song(宋松和), Li-Ying Zhang(张利英). Chin. Phys. B, 2016, 25(11): 110201.
[7] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[8] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[9] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[10] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[11] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
[12] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[13] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[14] Variational regularization method of solving the Cauchy problem for Laplace’s equation: Innovation of the Grad-Shafranov (GS) reconstruction
Yan Bing (颜冰), Huang Si-Xun (黄思训). Chin. Phys. B, 2014, 23(10): 109402.
[15] Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes
L. Kavitha, A. Muniyappan, S. Zdravković, M. V. Satarić, A. Marlewski, S. Dhamayanthi, D. Gopi. Chin. Phys. B, 2014, 23(9): 098703.
No Suggested Reading articles found!