CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of oxygen content on dielectric characteristics of Cr-doped LaTiOx |
Ming Ma(马铭)1, Yan Chen(陈彦)2, Yi-Min Cui(崔益民)2 |
1 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; 2 School of Physics, Beihang University, Beijing 100191, China |
|
|
Abstract The ceramics La0.85Cr0.15TiOx and La0.7Cr0.3TiOx are prepared by conventional solid-state reaction method. The dielectric properties of Cr-doped LaTiOx as a function of frequency (0.1 kHz ≤ f ≤ 1 MHz) and temperature (77 K ≤ T ≤ 360 K) are studied. The blocks are then annealed in a flowing O2 or Ar/H2 to convert their oxygen content and the tests mentioned above are performed. The highly oxygenated samples exhibit extremely high low-frequency dielectric constants at room temperature (~106). The results show that the oxygen stoichiometry could significantly influence the dielectric properties of Cr-doped LaTiOx.
|
Received: 16 December 2017
Revised: 17 January 2018
Accepted manuscript online:
|
PACS:
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
77.22.Gm
|
(Dielectric loss and relaxation)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.51571006). |
Corresponding Authors:
Yan Chen
E-mail: chenyan@buaa.edu.cn
|
Cite this article:
Ming Ma(马铭), Yan Chen(陈彦), Yi-Min Cui(崔益民) Effect of oxygen content on dielectric characteristics of Cr-doped LaTiOx 2018 Chin. Phys. B 27 057702
|
[1] |
Ahn C H, Triscone J M and Mannhart J 2003 Nature 424 1015
|
[2] |
Cheng J G, Meng X J, Li B, Tang J, Guo S L and Chu J H 1999 Appl. Phys. Lett. 75 2132
|
[3] |
Maurya D, Pramanick A, An K and Priya S 2012 Appl. Phys. Lett. 100 172906
|
[4] |
Suzuki H, Bando H, Ootuka Y, Inoue I, Yamamoto T, Takahashi K and Nishihara Y 1999 J. Phys. Soc. Jpn. 65 1529
|
[5] |
Moetakef P, Zhang J Y, Kozhanov A, Jalan B, Seshadri R, Allen S J and Stemmer S 2011 Appl. Phys. Lett. 98 112110
|
[6] |
Schmehl A, Lichtenberg F, Bielefeldt H, Mannhart J and Schlom D G 2003 Appl. Phys. Lett. 82 3077
|
[7] |
Schmitz R, Entin-wohlman O, Aharony A, Harris A B and Muellerhartmann E 2005 Phys. Rev. B 71 144412
|
[8] |
Lunkenheimer P, Rudolf T, Hemberger J, Pimenov A, Tachos S, Lichtenberg F and Loidl A 2003 Phys. Rev. B 68 245108
|
[9] |
Madhavan B and Ashok A 2015 J. Sol-Gel Sci. Technol. 73 1
|
[10] |
Fasquele D, Carru J C, Gendre L L, Paven C L, Pinel J, Cheviré F, Tessier F and Marchand R 2005 J. Eur. Ceram. Soc. 25 2085
|
[11] |
Chen Y, Xu J X, Cui Y M, Shang G Y, Qian J Q and Yao J E 2016 Prog. Nat. Sci.:Mater. Int. 26 158
|
[12] |
ZhangL L, Nie Y L, Hu C and Qu J H 2012 Appl. Catal. B 125 418
|
[13] |
Gao L H, Ma Z and Fan Q B 2011 J. Electroceram. 27 114
|
[14] |
Bradha M, Hussain S, Chakravarty S, Ashok A and Amarendra G 2014 Ionics 20 1343
|
[15] |
Kim J K, Sang S S and Kim W J 2006 Appl. Phys. Lett. 88 132901
|
[16] |
Janousch M, MeijerG I, Staub U, Delley B, Karg S F and Andreasson B P 2007 Adv. Mater. 19 2232
|
[17] |
Borgarello E, Kiwi J, Graetzel M, Pelizzetti E and Visca M 1982 J. Am. Chem. Soc. 104 2996
|
[18] |
Shi S, Liu L, Ouyang C, Wang D S, Huang X J and Chen L Q 2003 Phys. Rev. B 68 195108
|
[19] |
Watanabe Y, Bednorz J G, Bietsch A, Gerber C, Widmer D and Beck A 2001 Appl. Phys. Lett. 78 3738
|
[20] |
Chen Y H, Zhao Y M, An X N, Liu J M, Dong Y Z and Chen L 2009 Electrochim. Acta 54 5844
|
[21] |
ChangW, Horwitz J S, Carter A C, Pond J M, Kirchoefer SW, Gilmore C M and Chrisey D B 1999 Appl. Phys. Lett. 74 1033
|
[22] |
Lee M K, Huang J J and Wu T S 2005 Semicond. Sci. Technol. 20 519
|
[23] |
Cui Y M, Zhang L W, Wang C C, Shi K and Cao B S 2006 J. Magn. Magn. Mater. 297 21
|
[24] |
Bamzai K K, Koohpayeh S M, Kaur B, Fort D and Abell J S 2008 Ferroelectrics 377 1
|
[25] |
Cui Y M and Wang R M 2007 Appl. Phys. Lett. 91 233513
|
[26] |
Cui Y M, Cai W, Li Y, Qian J Q, Xu P, Wang R M and Yao J E 2006 J. Appl. Phys. 100 034101
|
[27] |
Chen C, Xu K B, Cui Y M and Wang C C 2012 Mater. Lett. 89 153
|
[28] |
Lu C and Cui Y M 2012 Physica B 407 3856
|
[29] |
Xu J X and Cui Y M 2013 Mater. Sci. Eng. B 178 316
|
[30] |
Cui Y M, Zhang L W, Xie C L and Wang R M 2006 Solid State Commun. 138 481
|
[31] |
Cui Y M, Zhang L W and Wang R M 2006 Physica C 442 29
|
[32] |
Cui Y M, Liu W and Wang R M 2013 Phys. Chem. Chem. Phys. 15 6804
|
[33] |
Jr E R N 1959 Biochim. Biophys. Acta 63 1381
|
[34] |
Vidyasagar C C, Muralidhara H B, Naik Y A, Gururaj H and Ilango M S 2015 Energy Environ. Focus 4 54
|
[35] |
López G P, Castner D G, Ratner B D 1991 Surf. Interface Anal. 17 267
|
[36] |
Miao J P, Lü Z, Li L P, Ning F L, Liu Z G, Huang X Q, Sui Y, Qian Z N, Su W H 2000 Mater. Lett. 427 267
|
[37] |
Marshall M S J, Newell D T, Payne D K, Egdell R G and Castell M R 2011 Phys. Rev. B 83 035410
|
[38] |
Daulton T L and Little B J 2006 Ultramicroscopy 106 561
|
[39] |
Zhong L, Cai W and Zhong Q 2014 Rsc Adv. 4 43529
|
[40] |
Drera G, Salvinelli G, Brinkman A, Huijben M, Koster G, Hilgenkamp H, Rijnders G, Visentin D and Sangaletti L 2012 Phys. Rev. B 87 1081
|
[41] |
Zhou Y, Chen C H, Wang N N, Li Y Y and Ding H M 2016 J. Phys. Chem. C 120 6116
|
[42] |
Guillemot F, Porte M C, Labrugere C and Baquey C H 2002 J. Colloid Interface Sci. 255 75
|
[43] |
Dholam R, Patel N, Adami M and Miotello A 2009 Int. J. Hydrogen Energy 34 5337
|
[44] |
Pesci F M, Wang G, KlugDR, Li Y and Cowan A J 2013 J. Phys. Chem. C 117 25837
|
[45] |
Wang G J, Wang C C, Huang S G, Lei C M, Mei J Y, Sun X H and Li T 2012 J. Electroceram. 28 172
|
[46] |
Zhang Y T, Wang C C and He M 2009 J. Phys. D:Appl. Phys. 42 055309
|
[47] |
Lichtenberg F, Widmer D, Bednorz J G, Williams T and Reller A 1991 Z. Phys. B 82 211
|
[48] |
Chang F G, Song G L, Fang K and Wang Z K 2007 Acta Phys. Sin. 56 6068
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|