Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 044206    DOI: 10.1088/1674-1056/25/4/044206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A closed form of a kurtosis parameter of a hypergeometric-Gaussian type-II beam

Khannous F, Ebrahim A A A, Belafhal A
Laboratory of Nuclear, Atomic and Molecular Physics, Department of Physics, Faculty of Sciences, Choua\"ib Doukkali University, P. D. Box 20, 24000 El Jadida, Morocco
Abstract  Based on the irradiance moment definition and the analytical expression of waveform propagation for hypergeometric-Gaussian type-II beams passing through an ABCD system, the kurtosis parameter is derived analytically and illustrated numerically. The kurtosis parameters of the Gaussian beam, modified Bessel modulated Gaussian beam with quadrature radial and elegant Laguerre-Gaussian beams are obtained by treating them as special cases of the present treatment. The obtained results show that the kurtosis parameter depends on the change of the beam order m and the hollowness parameter p, such as its decrease with increasing m and increase with increasing p.
Keywords:  Kurtosis parameter      hypergeometric-Gaussian type-II beams      paraxial optical ABCD system  
Received:  08 September 2015      Revised:  12 November 2015      Accepted manuscript online: 
PACS:  42.55.Ah (General laser theory)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Corresponding Authors:  Belafhal A     E-mail:  belafhal@gmail.com

Cite this article: 

Khannous F, Ebrahim A A A, Belafhal A A closed form of a kurtosis parameter of a hypergeometric-Gaussian type-II beam 2016 Chin. Phys. B 25 044206

[1] Siegman A E 1990 Proc. SPIE 1224 2
[2] Mejias P M, Weber H, Martinez-Herrero R and Gonzalez A-Urena (eds.) 1993 Proceeding of Laser Beam Characterization (Madrid, Spain: Seceded Espanda Optica)
[3] Mei Z and Zhao D 2007 Optics & Laser Technology 39 586
[4] Luo S and Lü B 2002 Optik 113 227
[5] Cunzhi S, Pu J and Chávez-Cerda S 2015 Opt. Lett. 40 1105
[6] Martinez-Herrero R, Piquero G and Mejias P M 1995 Opt. Commun. 115 225
[7] Amarande S A 1996 Opt. Commun. 129 311
[8] Hricha Z, Dalil-Essakali L, Ibnchaikh M and Belafhal A 2001 Phys. Chem. News 3 11
[9] Lü B and Wanga X 2002 Opt. Commun. 204 91
[10] Luo S and Lü B 2002 Optik 113 329
[11] Chafiq A, Hricha Z and Belafhal A 2009 Opt. Commun. 282 2590
[12] Zhao D, Mao H and Sun D 2003 Optik 114 535
[13] Zhou G 2009 Optics & Laser Technology 41 953
[14] Karimi E, Piccirillo B, Marrucci L and Santamato E 2008 Opt. Exp. 16 21069
[15] Buchholz H 1969 The Confluent Hypergeometric Function with Special Emphasis on Its Applications (New York: Springer)
[16] Erdelyi A, Magnus W and Oberhettinger F 1954 Tables of Integral Transforms (New York: McGraw-Hill)
[17] Gradshteyn I S and Ryznik I M 2007 Tables of Integrals Series and Products, 7th edn. (New York: Academic Press)
[1] Kurtosis parameters of super Lorentz–Gauss beams through a paraxial and real ABCD optical system
Zhou Guo-Quan (周国泉) . Chin. Phys. B, 2011, 20(11): 114103.
No Suggested Reading articles found!