Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 120701    DOI: 10.1088/1674-1056/25/12/120701
GENERAL Prev   Next  

Synthesization of high-capacity auto-associative memories using complex-valued neural networks

Yu-Jiao Huang(黄玉娇), Xiao-Yan Wang(汪晓妍), Hai-Xia Long(龙海霞), Xu-Hua Yang(杨旭华)
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Abstract  

In this paper, a novel design procedure is proposed for synthesizing high-capacity auto-associative memories based on complex-valued neural networks with real-imaginary-type activation functions and constant delays. Stability criteria dependent on external inputs of neural networks are derived. The designed networks can retrieve the stored patterns by external inputs rather than initial conditions. The derivation can memorize the desired patterns with lower-dimensional neural networks than real-valued neural networks, and eliminate spurious equilibria of complex-valued neural networks. One numerical example is provided to show the effectiveness and superiority of the presented results.

Keywords:  associative memory      complex-valued neural network      real-imaginary-type activation function      external input  
Received:  18 May 2016      Revised:  15 July 2016      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.30.Ks (Delay and functional equations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61503338, 61573316, 61374152, and 11302195) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F030005).

Corresponding Authors:  Yu-Jiao Huang     E-mail:  hyj0507@zjut.edu.cn

Cite this article: 

Yu-Jiao Huang(黄玉娇), Xiao-Yan Wang(汪晓妍), Hai-Xia Long(龙海霞), Xu-Hua Yang(杨旭华) Synthesization of high-capacity auto-associative memories using complex-valued neural networks 2016 Chin. Phys. B 25 120701

[1] Hopfield J J 1982 Proc. Nat. Acad. Sci. 79 2554
[2] Hirose A 2003 Complex-valued Neural Networks:Theories and Applications (Singapore:World Scientific)
[3] Zhang H G, Liu Z W, Huang G B and Wang Z S 2010 IEEE Trans. Neural Netw. 21 91
[4] Zhang H G, Yang F S, Liu X D and Zhang Q L 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 513
[5] Zhang H G, Wang J Y, Wang Z S and Liang H J 2015 IEEE Trans. Neural Netw. Learn. Syst. 26 2621
[6] Rao V and Murthy G 2008 Int. J. Neural Syst. 18 165
[7] Kwon O M, Kwon J W and Kim S H 2011 Chin. Phys. B 20 050505
[8] Song Q, Zhao Z and Liu Y 2015 Neurocomputing 168 1044
[9] Gong W, Liang J and Cao J 2015 Neurocomputing 168 135
[10] Wen S P, Zeng Z G, Huang T W and Zhang Y D 2014 IEEE Trans. Fuzzy Syst. 22 1704
[11] Wen S P, Zeng Z G, Huang T W, Meng Q G and Yao W 2015 IEEE Trans. Neural Netw. Learn. Syst. 26 1493
[12] Cao Y T, Wen S P, Chen Michael Z Q, Huang T W and Zeng Z G 2016 Neural Netw. 81 52
[13] Li N, and Cao J 2016 Int. J. Syst. Sci. 47 2827
[14] Bao G and Zeng Z G 2012 Neurocomputing 77 101
[15] Grassi G 1997 IEEE Trans. Circuits Syst. I 44 835
[16] Grassi G 2001 IEEE Trans. Circuits Syst. I 48 107
[17] Han Q, Liao X, Huang T, Peng J, Li C and Huang H 2012 Neurocomputing 97 192
[18] Liu D and Michel A N 1994 IEEE Trans. Circuits Syst. II 41 295
[19] Zeng Z G and Wang J 2008 IEEE Trans. Syst., Man, Cybern. B 38 1525
[20] Zeng Z G and Wang J 2009 Neural Netw. 22 651
[21] Aizenberg N N and Aizenberg I N 1992 Proc. 2nd Int. Workshop on Cellular Neural Netw. Appl. p. 36
[22] Jankowski S, Lozowski A and Zurada J M 1996 IEEE Trans. Neural Netw. 7 1491
[23] Lee D L 2006 IEEE Trans. Neural Netw. 17 1341
[24] Müezzinoğlu M K, Güeliş C and Zurada J M 2003 IEEE Trans. Neural Netw. 14 891
[25] Tanaka G and Aihara K 2008 IEEE Trans. Neural Netw. 20 1463
[26] Zurada J M, Cloete I and Van der Poel E 1996 Neurocomputing 13 135
[27] Cao J D, Feng G and Wang Y Y 2008 Physica D 237 1734
[28] Huang Z, Song Q and Feng C 2010 IEEE Trans. Circuits Syst. I 57 2144
[29] Wang L L and Chen T P 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1816
[30] Wang L L and Chen T P 2014 Neural Netw. 53 109
[31] Huang Y J, Zhang H G and Wang Z S 2014 Appl. Math. Comput. 229 187
[32] Zeng Z G and Zheng W X 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 1749
[33] Liu P, Zeng Z G and Wang J 2016 IEEE Trans. Syst. Man. Cybernetics 46 512
[34] Hu J and Wang J 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 853
[35] Yosida K 1978 Functional Analysis (Berlin:Springer-Verlag)
[36] Hirose A 2011 Front. Electr. Electron. Eng. China 6 171
[1] Multistability of delayed complex-valued recurrent neural networks with discontinuous real-imaginary-type activation functions
Huang Yu-Jiao (黄玉娇), Hu Hai-Gen (胡海根). Chin. Phys. B, 2015, 24(12): 120701.
No Suggested Reading articles found!