Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 095203    DOI: 10.1088/1674-1056/24/9/095203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Fluid simulation of inductively coupled Ar/O2 plasmas: Comparisons with experiment

Wang Yan-Hui (王艳会), Liu Wei (刘巍), Zhang Yu-Ru (张钰如), Wang You-Nian (王友年)
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  

In this work, a two-dimensional fluid model has been employed to study the characteristics of Ar/O2 radio frequency (RF) inductively coupled plasma discharges. The emphasis of this work has been put on the influence of the external parameters (i.e., the RF power, the pressure, and the Ar/O2 gas ratio) on the plasma properties. The numerical results show that the RF power has a significant influence on the amplitude of the plasma density rather than on the spatial distribution. However, the pressure and the Ar/O2 gas ratio affect not only the amplitude of the plasma density, but also the spatial uniformity. Finally, the comparison between the simulation results and the experimental data has been made at different gas pressures and oxygen contents, and a good agreement has been achieved.

Keywords:  fluid simulation      experimental measurement      Ar/O2 inductive discharges  
Received:  06 March 2015      Revised:  06 June 2015      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.80.Pi (High-frequency and RF discharges)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
Fund: 

Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02403-001) and the National Natural Science Foundation of China (Grant No. 11205025).

Corresponding Authors:  Wang You-Nian     E-mail:  ynwang@dlut.edu.cn

Cite this article: 

Wang Yan-Hui (王艳会), Liu Wei (刘巍), Zhang Yu-Ru (张钰如), Wang You-Nian (王友年) Fluid simulation of inductively coupled Ar/O2 plasmas: Comparisons with experiment 2015 Chin. Phys. B 24 095203

[1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Material Processing (2nd edn.) (New York: Wiley-Interscience)
[2] Collison W Z, Ni T Q and Barnes M S 1998 J. Vac. Sci. Technol. A 16 100
[3] Standaert T E F M, Schaekens M, Rueger N R, Sebel P G M, Oehrlein G S and Cook J M 1998 J. Vac. Sci. Technol. A 16 239
[4] Lee S H, Lza F and Lee J K 2006 Phys. Plasmas 13 057102
[5] Takechi K and Lieberman M A 2001 J. Appl. Phys. 90 3205
[6] Gudmundsson J T and Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399
[7] Meeks E, Larson R S, Ho P, Apblett C, Han A M, Edelberg E and Aydil E S 1998 J. Vac. Sci. Technol. A 16 544
[8] Hsu C C, Nierode M A, Coburn J W and Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272
[9] Cai M X, Haydar D A, Montaser A and Mostaghimi J 1997 Spectrochimica Acta Part B 52 369
[10] Lazzaroni C, Baba K, Nikravech M and Chabert P 2012 J. Phys. D: Appl. Phys. 45 485207
[11] Cheng J, Zhu Y and Ji L 2012 Plasma Sci. Technol. 14 1059
[12] Colpo P, Mrziani T and Rossi F 2005 J. Vac. Sci. Technol. A 23 270
[13] Lee J W, Jung P G, Devre M, Westermann R and Pearton S J 2002 Solid-State Electronics 46 685
[14] Babaeva N Y, Lee J K Shon J W and Hudson E A 2005 J. Vac. Sci. Technol. A 23 699
[15] Zhao S X, Gao F, Wang Y N and Bogaerts A 2013 Plasma Sources Sci. Technol. 22 015017
[16] Liu X M, Li Q N and Xu X 2014 Chin. Phys. B 23 085202
[17] Gudmundsson J T, Kimura T and Lieberman M A 1999 Plasma Sources Sci. Technol. 8 22
[18] Kim J S, Rao M V V S, Cappelli M A, Sharma S P and Meyyappan M 2001 Plasma Sources Sci. Technol. 10 191
[19] Bi Z H, Xu X, Liu Y X, Jiang X Z, Lu W Q and Wang Y N 2011 Plasma Sci. Technol. 13 181
[20] Zhao S X, Xu X, Li X C and Wang Y N 2009 J. Appl. Phys. 105 083306
[21] Zhang Y R, Xu X, Bogaerts A and Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015203
[22] Gao F, Zhao S X, Li X S and Wang Y N 2009 Phys. Plasmas 16 113502
[23] Gao F, Li X C, Zhao S X and Wang Y N 2012 Chin. Phys. B 21 075203
[24] Gao F, Liu W, Zhao S X, Zhang Y R, Sun C S and Wang Y N 2013 Chin. Phys. B 22 115205
[25] Gudmundsson J T, Kouznetsov I G, Patel K K and Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100
[26] You Z W, Dai Z L and Wang Y N 2014 Plasma Sci. Technol. 16 335
[27] Kiehlbauch M W and Graves D B 2003 J. Vac. Sci. Technol. A 21 660
[1] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[2] Fluid simulation of the pulsed bias effect on inductively coupled nitrogen discharges for low-voltage plasma immersion ion implantation
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Xue-Chun Li(李雪春), You-Nian Wang(王友年). Chin. Phys. B, 2017, 26(1): 015201.
[3] Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges
Ying-Shuang Liang(梁英爽), Yu-Ru Zhang(张钰如), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(10): 105206.
[4] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
[5] Influences of the surface elastic energy term K13 on the critical fields of liquid crystal cells and experimental measurement of K13
Guan Rong-Hua (关荣华), Wang Chui-Ru (王翠茹), Yu Hui (于慧), Kang Wen-Xiu (康文秀), Huai Jun-Xia (淮俊霞), Yang Guo-Chen (杨国琛). Chin. Phys. B, 2005, 14(2): 386-392.
No Suggested Reading articles found!