Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 088901    DOI: 10.1088/1674-1056/24/8/088901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Establishment, maintenance, and re-establishment of the safe and efficient steady-following state

Pan Deng (潘登), Zheng Ying-Ping (郑应平)
School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
Abstract  We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functions are introduced to establish the corresponding mathematical models, which can describe the behavioral adjustment of the following vehicle steered by a well-experienced driver under complex vehicle following situations. According to the proposed mathematical models, the control laws of the following vehicle adjusting its own behavior can be calculated for its moving in safety, efficiency, and smoothness (comfort). Simulation results show that the safe and efficient steady-following state can be well established, maintained, and re-established by its own smooth (comfortable) behavioral adjustment with the synchronous control of the following vehicle's velocity, acceleration, and the actual following distance.
Keywords:  vehicle following system      safe following distance      hyperbolic function      vehicle following control      steady-following state  
Received:  08 January 2015      Revised:  12 March 2015      Accepted manuscript online: 
PACS:  89.40.-a (Transportation)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  45.80.+r (Control of mechanical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61174183).
Corresponding Authors:  Pan Deng     E-mail:  pandeng@tongji.edu.cn

Cite this article: 

Pan Deng (潘登), Zheng Ying-Ping (郑应平) Establishment, maintenance, and re-establishment of the safe and efficient steady-following state 2015 Chin. Phys. B 24 088901

[1] Pipes L A 1953 J. Appl. Phys. 24 272
[2] Dunbar W and Caveney D S 2012 IEEE Trans. Autom. Control 57 620
[3] Li S, Li K Q, Rajamani R and Wang J Q 2011 IEEE Trans. Control. Syst. Technol. 19 556
[4] Chandler R E, Herman R and Montroll E W 1958 Operat. Res. 6 165
[5] Jin S, Wang D H and Yang X R 2011 TRR Journal 2249 7
[6] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[7] Bando M, Hasebe K, Nakanishi K and Nakayama A 1998 Phys. Rev. E 58 5429
[8] Tordeux A and Seyfried A 2014 Phys. Rev. E 90 042812
[9] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[10] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[11] Zhao X and Gao Z 2005 Eur. Phys. J. B 47 145
[12] Peng G H, Cai X H and Liu C Q 2011 Phys. Lett. A 375 3973
[13] Pan D and Zheng Y 2013 J. China Railw. Soc. 35 51 (in Chinese)
[14] Desjardins C and Chaib-draa B 2011 IEEE Trans. Intell. Transport Syst. 12 1248
[15] Kesting A, Treiber M, Schonhof M and Helbing D 2008 Transp. Res. C 16 668
[16] Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[17] Ge J and Orosz G 2014 Transp. Res. Part C 46 46.
[18] Tang T Q, Li J G, Huang H J and Yang X B 2014 Measurement 48 63
[19] Tang T Q, Li J G, Wang Y P and Yu G Z 2013 Sci. China-Tech. Sci. 56 1307
[20] Yang S C, Li M, Tang T Q and Lin Y 2013 Measurement 46 4226
[21] Yang S C, Deng C, Tang T Q and Qian Y S 2013 Nonlinear Dyn. 71 323
[22] Shi W and Xue Y 2007 Physica A 381 399
[23] Nakayama A, Sugiyama Y and Hasebe K 2001 Phys. Rev. E 65 016112
[24] Newell G F 1961 Oper. Res. 9 209
[25] Kerner B S and Rehborn H 1997 Phys. Rev. Lett. 79 4030
[26] Kerner B S, Klenov S L, Hiller A and Rehborn H 2006 Phys. Rev. E 73 046107
[27] Kerner B S 2007 Transp. Res. Rec. 1999 30
[28] Kerner B S 2007 IEEE Trans. Intell. Transport Syst. 8 308
[29] Kerner B S, Klenov S L and Hiller A 2007 Nonlinear Dyn. 49 525
[30] Kerner B S 2012 Phys. Rev. E 85 036110
[31] Kerner B S, Rehborn H, Schafer R P, Klenov S L, Palmer J, Lorkowski S and Witte N 2013 Physica A 392 221
[32] Kerner B S, Hemmerle P, Koller M, Hermanns G, Klenov S L, Rehborn H and Schreckenberg M 2014 Phys. Rev. E 90 032810
[33] Lee H Y, Lee H W and Kim D 1998 Phys. Rev. Lett. 81 1130
[34] Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
[35] Tomer E, Safonov L and Havlin S 2000 Phys. Rev. Lett. 84 382
[36] Helbing D, Johansson A, Mathiesen J, Jensen M H and Hansen A 2006 Phys. Rev. Lett. 97 168001
[37] Nagatani T 1999 Phys. Rev. E 60 6395
[38] Naito Y and Nagatani T 2011 Phys. Lett. A 375 1319
[39] Naito Y and Nagatani T 2012 Physica A 391 1626
[40] Sugiyama N and Nagatani T 2012 Phys. Lett. A 376 1803
[41] Sugiyama N and Nagatani T 2013 Physica A 392 1848
[42] Lenz H, Wagner C K and Sollacher R 1999 Eur. Phys. J. B 7 331
[43] Kurata S and Nagatani T 2001 Phys. Rev. E 64 016106
[44] Jiang R, Hu M B, Jia B and Gao Z Y 2014 Comput. Phys. Commun. 185 1439
[45] Jiang R, Hu M B, Zhang H M, Gao Z Y, Jia B, Wu Q S, Wang B and Yang M 2014 Plos One 9 e94351
[46] Ge H X, Dai S Q, Dong L Y and Xue Y 2004 Phys. Rev. E 70 066134
[47] Ge H X, Dai S Q, Xue Y and Dong L Y 2005 Phys. Rev. E 71 066119
[48] Tang T Q, Huang H J and Xu G 2008 Physica A 387 6845
[49] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin. Phys. B 18 975
[50] Tang T Q, Wu Y H, Caccetta L and Huang H J 2011 Phys. Lett. A 375 3845
[51] Peng G H and Sun D H 2009 Chin. Phys. B 18 5420
[52] Yu S W, Liu Q L and Li X H 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1229
[53] Yu S W and Shi Z K 2014 Physica A 407 152
[54] Yu S W and Shi Z K 2015 Physica A 421 1
[55] Zhang H M 2003 Transp. Res. Part B 37 27
[56] Zhou T, Sun D H, Kang Y R, Li H M and Tian C 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3820
[57] Zhu W X and Jia L 2008 Commun. Theor. Phys. 50 505
[58] Kerner B S 2013 Physica A 392 5261
[59] International Organization for Standardization 1997 Mechanical vibration and shock–Evaluation of human exposure to whole-body vibration–Part 1: General requirements, 2nd edn. (Geneve: International Organization for Standardization) ISO2631-1
[60] British Standards Institution 2001 Mechanical vibration and shock–Evaluation of human exposure to whole-body vibration–Part 4: Guidelines for the evaluation of the effects of vibration and rotational motion on passenger and crew comfort in fixed-guide way transport systems (London: British Standards Institution) ISO2631-4
[61] Martinez J J and Canudas-de-Wit C 2007 IEEE Trans. Control. Syst. Technol. 15 246
[62] Somda F H, Cormerais H and Buisson J 2009 IET Intell. Transp. Syst. 3 188
[63] Castellanos J C and Fruett F 2014 Measurement 47 442
[1] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[2] Some new solutions derived from the nonlinear (2+1)-dimensional Toda equation---an efficient method of creating solutions
Bai Cheng-Lin(白成林), Zhang Xia(张霞), and Zhang Li-Hua (张立华). Chin. Phys. B, 2009, 18(2): 475-481.
[3] A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice
Zha Qi-Lao (扎其劳), Sirendaoreji (斯仁道尔吉). Chin. Phys. B, 2006, 15(3): 475-477.
[4] Dynamics of solitons in Bose-Einstein condensate with time-dependent atomic scattering length
Li Hua-Mei(李画眉). Chin. Phys. B, 2006, 15(10): 2216-2222.
[5] Hyperbolic function method for solving nonlinear differential-different equations
Zhu Jia-Min (朱加民). Chin. Phys. B, 2005, 14(7): 1290-1295.
[6] Exact discrete soliton solutions of quintic discrete nonlinear Schrödinger equation
Li Hua-Mei (李画眉), Wu Feng-Min (吴锋民). Chin. Phys. B, 2005, 14(6): 1069-1074.
No Suggested Reading articles found!